Q245152: XADM: How Secure Sockets Layer Works
Article: Q245152
Product(s): Microsoft Exchange
Version(s): winnt:4.0,5.0,5.5
Operating System(s):
Keyword(s): exc4 exc5 exc55
Last Modified: 06-AUG-2002
-------------------------------------------------------------------------------
The information in this article applies to:
- Microsoft Exchange Server, versions 4.0, 5.0, 5.5
-------------------------------------------------------------------------------
SUMMARY
=======
This article provides an overview of how Secure Sockets Layer (SSL) works.
MORE INFORMATION
================
An Introduction to Key Cryptography
-----------------------------------
Rivest-Shamir-Adleman (RSA) public key cryptography is widely used for
authentication and encryption in the computer industry. Netscape has licensed
RSA public key cryptography from RSA Data Security Inc. for use in its products,
specifically for authentication.
Public key encryption is a technique that uses a pair of asymmetric keys for
encryption and decryption. Each pair of keys consists of a public key and a
private key. The public key is made public when it is distributed it widely. The
private key is never distributed; it is always kept secret.
Data that is encrypted with the public key can only be decrypted with the private
key. Conversely, data that is encrypted with the private key can be decrypted
only with the public key. This asymmetry is the property that makes public key
cryptography so useful.
Using Public Key Cryptography for Authentication
------------------------------------------------
Authentication is the process of verifying identity so that one entity can be
sure of the identity of another entity. In the following examples, User A and
User B use public key cryptography to verify User B's identity. The following
notation indicates that an item has been encrypted or decrypted using key
cryptography
{<something>}<key>
where <something> is a description of the item that has been encrypted or
decrypted, and <key> is the key that is used to encrypt or decrypt that
item.
In the following example, User A wants to authenticate User B. User B has a pair
of keys, one public and one private. User B discloses the public key to User A
(this is discussed in the "Handing Out Public Keys" section of this article).
User A generates a random message and sends it to User B as follows:
A->B <random_message>
User B uses the private key to encrypt the random message and returns the
encrypted version to User A:
B->A {<random_message>}<User_B's_private_key>
User A receives this message and decrypts it by using the public key that User B
previously published. User A compares the decrypted message with the message
that User A originally sent to User B; if the messages match, User A knows that
the later message came from User B, because an imposter presumably would not
know User B's private key and so would be unable to properly encrypt the random
message to send to User A.
Additional Considerations
-------------------------
Unless you know exactly what you are encrypting, it is never a good idea to
encrypt something with your private key and then send it to someone else. This
is because you can be held responsible for the encrypted value (remember, only
you can perform the encryption because only you have the private key).
Because of this, in this example, instead of encrypting the original message that
User A sent, User B constructs a message digest and encrypts that message
digest. A message digest is derived from the original random message and has the
following useful properties:
- The digest is difficult to reverse. Someone who is trying to impersonate User
B cannot determine the original message from the digest.
- An impersonator has difficulty finding a different message that computes to
the same digest value.
User B is protected by using a digest. User B computes the digest of the random
message that User A sent, and then encrypts the result. User B sends the
encrypted digest back to User A. User A can compute the same digest and
authenticate User B by decrypting User B's message and comparing the values.
Originating Data for Authentication
-----------------------------------
The technique described in the "Additional Considerations" section of this
article is known as a digital signature. This technique requires that User B
sign a message that User A generated; this is almost as dangerous for User B as
encrypting a random value that originated with User A. Consequently, this
example authentication protocol needs one more step to be secure; User B needs
to originate some (or all) of the data as follows:
A->B B->A hello, are you User B? User A, This Is User B {
<digest>[User A, This Is User B] } <User_B's_private_key>
When User B uses this protocol, User B knows what message is being sent to User
A, and so User B can safely sign the message. User B sends the unencrypted
version of the message first, "User A, This Is User B," and then User B sends
the digested-encrypted version. User A can easily verify that User B is User B,
and User B does not need to sign anything that did not originate with User B.
Handing Out Public Keys
-----------------------
How can a user hand out a public key in a secure manner? The following is an
example authentication protocol for User B:
A->B B->A A->B B->A
hello Hi, I'm User B, <User_B's_public_key> prove it User A, This Is
User B { <digest>[User A, This Is User B] } <User_B's_private_key>
If this protocol is used, anyone can impersonate User B. All an imposter needs is
a public and private key. An imposter can lie to User A and impersonate User B
by providing the imposter's own public key instead of User B's public key. Then
the imposter "proves" that the imposter is User B by encrypting something by
using the imposter's private key, and User A cannot tell that the imposter is
not User B.
To solve this problem, the standards community has invented an object called a
certificate. A certificate contains the following information:
- The name of the certificate issuer.
- The entity for whom the certificate is being issued (also known as the
subject).
- The public key of the subject.
- Some time stamps.
The certificate is signed by using the private key of the certificate issuer.
Everyone knows the public key of the certificate issuer (that is, the
certificate issuer also has a certificate). Certificates are a standard method
to bind a public key to a name.
If certificate technology is used, everyone can examine User B's certificate to
see if the certificate has been forged. If User B keeps tight control of the
private key, and User B actually obtains the certificate, then the certificate
technology is secure. The following is the amended protocol using this
technique:
A->B B->A A->B B->A hello Hi, I'm User B,
<User_B's_certificate> prove
it User A, This Is User B { <digest>[User A, This Is User B] }
<User_B's_private_key>
When User A receives User B's first message, User A can examine the certificate,
check the signature (as in the previous example, by using a digest and public
key decryption), and then check the subject (that is, User B's name) and see
that it is indeed User B. User A can then trust that the public key is User B's
public key, and can request proof of User B's identity.
User B goes through the same process as outlined in the previous example, by
designing a message digest and then responding to User A with a signed version
of the digest. User A can verify User B's message digest by using the public key
from the certificate and checking the result.
A person who may want to interfere with secure communications (in this example,
User C) can create the following scenario to try to do so:
A->C C->A A->C C->A hello Hi, I'm User B,
<User_B's_certificate> prove
it ????
However, User C cannot satisfy User A in the final message. User C does not have
User B's private key, so User C cannot construct a message that User A will
believe comes from User B.
Exchanging a Secret
-------------------
After User A has authenticated User B, User A can send User B a message that only
User B can decode as follows
A->B {<secret>}<User_B's_public_key>
where the only way to determine the <secret> is by decrypting the above
message with User B's private key. Exchanging a secret is another powerful way
to use public key cryptography. Even if the communication between User A and
User B is observed, nobody but User B can determine the secret information.
This technique strengthens Internet security by using the secret as another key,
but in this case it is a key to a symmetric cryptographic algorithm, such as
Data Encryption Standard (DES), RC4, or IDEA. User A knows the secret because
User A generated the secret before sending it to User B. User B knows the secret
because User B has the private key and can decrypt User A's message. Because
both User A and User B know the secret, they can both start a symmetric cipher
algorithm and then send messages that are encrypted with the symmetric cipher
algorithm. The following is a revised protocol that uses this technique:
A->B B->A A->B B->A A->B B->A hello Hi, I'm User B,
<User_B's_certificate>
prove it User A, This Is User B { <digest>[User A, This Is User B] }
<User_B's_private_key>
ok User B, here is a secret {<secret>} <User_B's_public_key>
{<some_message>}<secret_key>
The method that is used to compute <secret_key> is up to the protocol that
is being defined, but <secret_key> can simply be a copy of the secret.
Security Interference
---------------------
Even if all of the preceding techniques are used, a person who wants to interfere
with secure communications (User C) may be able to do so. Although User C cannot
discover the secret that User A and User B have exchanged, User C can interfere
with their conversation by re-arranging (or garbling) the secret information.
For example, if User C is sitting between User A and User B, User C can pass
most of the information back and forth unchanged, but garble certain messages
(this is easy for User C to do because User C knows the protocol that User A and
User B are using to communicate):
A->C C->B B->C C->A A->C C->B B->C C->A A->C
C->B B->C C->A
hello hello Hi, I'm User B, <User_B's_certificate> Hi, I'm User B,
<User_B's_certificate> prove it prove it User A, This Is User B {
<digest>[User A,
This Is User B] } <User_B's_private_key> User A, This Is User B {
<digest>[User A, This Is
User B] } <User_B's_private_key> ok User B, here is a secret
{<secret>} <User_B's_public_key>
ok User B, here is a secret {<secret>} <User_B's_public_key>
{<some_message>}<secret_key>
Garble[ {<some_message>}<secret_key> ]
User C passes the data without modification until User A and User B share a
secret. Then User C garbles User B's message to User A. At this point, User A
trusts User B, so User A may believe the garbled message and try to act on it.
Note that User C does not know the secret; all User C can do is damage the data
that is encrypted with the secret key. Depending on the protocol, User C may not
produce a valid message, but User C may get lucky and produce a valid message.
To prevent this kind of damage, User A and User B can introduce a message
authentication code into their protocol. A message authentication code is a
piece of data that is computed by using a secret and some transmitted data. The
digest algorithm described above has just the right properties for building a
message authentication code function that can defend against User C:
<message_authentication_code> := <digest>[ <some_message>,
<secret> ]
Because User C does not know the secret, User C cannot compute the correct value
for the digest. Even if User C randomly garbles messages, the chance of success
is small if there is a large amount of digest data. For example, by using MD5 (a
good cryptographic digest algorithm invented by RSA), User A and User B can send
128-bit message authentication code values with their messages. The odds of User
C guessing the correct message authentication code are approximately 1 in
18,446,744,073,709,551,616. For all practical purposes, User C cannot guess the
correct message authentication code.
The following is the example protocol, revised again to use this technique:
A->B B->A A->B B->A hello Hi, I'm User B,
<User_B's_certificate> prove
it User A, This Is User B { <digest>[User A, This Is User B] }
<User_B's_private_key> ok
User B, here is a secret {<secret>} <User_B's_public_key>
{<some_message>,<message_authentication_code>}<secret_key>
User C can attempt to garble messages, but the message authentication code
computations reveal that the messages do not come from User B. User A or User B
can discover the incorrect message authentication code value and stop
communication. User C can no longer impersonate User B.
Additional query words:
======================================================================
Keywords : exc4 exc5 exc55
Technology : kbExchangeSearch kbExchange500 kbExchange550 kbExchange400 kbZNotKeyword2
Version : winnt:4.0,5.0,5.5
Issue type : kbinfo
=============================================================================
THE INFORMATION PROVIDED IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROSOFT CORPORATION OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF MICROSOFT CORPORATION OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FOREGOING LIMITATION MAY NOT APPLY.
Copyright Microsoft Corporation 1986-2002.