
SECOND EDITION 

THE 

lNG 
GUAGE 

BRIAN W KERNIGHAN 
DENNIS M. RITCHIE 

PRENTICE HALL SOFTWARE SERIES 





THE 

c 
PROGRAMMING 

LANGUAGE 

Second Edition 





THE 

c 
PROGRAMMING 

LANGUAGE 

Second Edition 

Brian W. Kernighan • Dennis M. Ritchie 

AT&T Bell Laboratories 
Murray Hill, New Jersey 

PRENTICE HALL, Englewood Cliffs, New Jersey 07632 



Ubrary of Congress Cataloging-in-Publication Data 

Kernighan, Brian W. 
The C programming language. 
Includes index. 
1. C (Computer program language) I. Ritchie, 

Dennis M. II. Title. 
QA76.73.C15K47 1988 005.13'3 88-5934 
ISBN 0-13-110370-9 
ISBN 0-13-110362-8 (pbk.) 

Copyright c 1988, 1978 by Bell Telephone Laboratories, Incorporated. 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher. 
Printed in the United States of America. Published simultaneously in Canada. 

UNIX is a registered trademark of AT&T. 

This book was typeset (pic l tbll eqn l troff -ms) in Times Roman and Courier by 
the authors, using an Autologic APS-5 phototypesetter and a DEC VAX 8550 running 
the 9th Edition of the UNIXS operating system. 

Prentice Hall Software Series 
Brian Kernighan, Advisor 

Printed in the United States of America 

10 9 8 7 

ISBN 
ISBN 

0-13-110362-8 
O-l3-110370-9 

iPBK} 

Prentice-Hall International (UK) Limited, London 
Prentice-Hall of Australia Pty. Limited, Sydney 
Prentice-Hall Canada Inc., Toronto 
Prentice-Hall Hispanoamericana, S.A., Mexico 
Prentice-Hall of India Private Limited, New Delhi 
Prentice-Hall of Japan, Inc., Tokyo 
Simon & Schuster Asia Pte. Ltd., Singapore 
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro 



Contents 

Preface ix 

Preface to the First Edition xi 

Introduction 1 

Chapter 1. A Tutorial Introduction 5 
l.l Getting Started 5 
1.2 Variables and Arithmetic Expressions 8 
1.3 The For Statement 13 
1.4 Symbolic Constants 14 
1.5 Character Input and Output 15 
1.6 Arrays 22 
1.7 Functions 24 
1.8 Arguments-Call by Value 27 
1.9 Character Arrays 28 
l.lO External Variables and Scope 31 

Chapter 2. Types, Operators, and Expressions 35 
2.1 Variable Names 35 
2.2 Data Types and Sizes 36 
2.3 Constants 37 
2.4 Declarations 40 
2.5 Arithmetic Operators 41 
2.6 Relational and Logical Operators 41 
2.7 Type Conversions 42 
2.8 Increment and Decrement Operators 46 
2.9 Bitwise Operators 48 
2.10 Assignment Operators and Expressions 50 
2.11 Conditional Expressions 51 
2.12 Precedence and Order of Evaluation 52 

Chapter 3. Control Flow 55 
3.1 Statements and Blocks 55 
3.2 If-Else 55 

v 



vi THE C PROGRAMMING LANGUAGE CONTENTS 

3.3 Else-If 57 
3.4 Switch 58 
3.5 Loops-While and For 60 
3.6 Loops-Do-while 63 
3.7 Break and Continue 64 
3.8 Goto and Labels 65 

Chapter 4. Functions and Program Structure 67 
4.1 Basics of Functions 67 
4.2 Functions Returning Non-integers 71 
4.3 External Variables 73 
4.4 Scope Rules 80 
4.5 Header Files 81 
4.6 Static Variables 83 
4.7 Register Variables 83 
4.8 Block Structure 84 
4.9 Initialization 85 
4.10 Recursion 86 
4.11 The C Preprocessor 88 

Chapter 5. Pointers and Arrays 93 
5.1 Pointers and Addresses 93 
5.2 Pointers and Function Arguments 95 
5.3 Pointers and Arrays 97 
5.4 Address Arithmetic 100 
5.5 Character Pointers and Functions 104 
5.6 Pointer Arrays; Pointers to Pointers 107 
5.7 Multi-dimensional Arrays 110 
5.8 Initialization of Pointer Arrays 113 
5.9 Pointers vs. Multi-dimensional Arrays 113 
5.10 Command-line Arguments 114 
5.11 Pointers to Functions 118 
5.12 Complicated Declarations 122 

Chapter 6. Structures 127 
6.1 Basics of Structures 127 
6.2 Structures and Functions 129 
6.3 Arrays of Structures 132 
6.4 Pointers to Structures 136 
6.5 Self-referential Structures 139 
6.6 Table Lookup 143 
6.7 Typedef 146 
6.8 Unions 147 
6.9 Bit-fields 149 

Chapter 7. Input and Output 151 
7.1 Standard Input and Output 151 
7.2 Formatted Output-Printf 153 



THE C PROGRAMMING LANGUAGE 

7.3 
7.4 
7.5 
7.6 
7.7 
7.8 

Variable-length Argument Lists 
Formatted lnput-Scanf 
File Access 
Error Handling-Stderr and Exit 
Line Input and Output 
Miscellaneous Functions 

Chapter 8. 
8.1 
8.2 
8.3 
8.4 
8.5 
8.6 
8.7 

The UNIX System Interface 
File Descriptors 
Low Level I/O-Read and Write 
Open, Creat, Close, Unlink 
Random Access-Lseek 
Example-An Implementation of Fopen and Getc 
Example-Listing Directories 
Example-A Storage Allocator 

Appendix A. Reference Manual 
A1 Introduction 
A2 Lexical Conventions 
A3 Syntax Notation 
A4 Meaning of Identifiers 
AS Objects and Lvalues 
A6 Conversions 
A 7 Expressions 
AS Declarations 
A9 Statements 
A l 0 External Declarations 
A 11 Scope and Linkage 
A 12 Preprocessing 
Al3 Grammar 

Appendix B. Standard Library 
81 Input and Output: <stdio.h> 
B2 Character Class Tests: <ctype.h> 
83 String Functions: <string.h> 
B4 Mathematical Functions: <math.h> 
BS Utility Functions: <stdlib.h> 
86 Diagnostics: <assert.h> 
B7 Variable Argument Lists: <stdarg.h> 
88 Non-local Jumps: <setjmp.h> 
B9 Signals: <signal.h> 
BlO Date and Time Functions: <time.h> 
B1l Implementation-defined Limits: <limits.h> and <float.h> 

Appendix C. Summary of Changes 

Index 

CONTENTS rii 

155 
157 
160 
163 
164 
166 

169 
169 
170 
172 
174 
175 
179 
185 

191 
191 
191 
194 
195, 
197 
197 
200 
210 
222 
225 
227 
228 
234 

241 
241 
248 
249 
250 
251 
253 
254 
254 
255 
255 
257 

259 

263 





Preface 

The computing worid has undergone a revolution since the publication of 
The C Programming Language in 1978. Big computers are much bigger, and 
personal computers have capabilities that rival the mainframes of a decade ago. 
During this time, C has changed too, although only modestly, and it has spread 
far beyond its origins as the language of the UNIX operating system. 

The growing popularity of C, the changes in the language over the years, 
and the creation of compilers by groups not involved in its design, combined to 
demonstrate a need for a more precise and more contemporary definition of the 
language than the first edition of this book provided. In 1983, the American 
National Standards Institute (ANSI) established a committee whose goal was to 
produce "an unambiguous and machine-independent definition of the language 
C," while still retaining its spirit. The result is the ANSI standard for C. 

The standard formalizes constructions that were hinted at but not described 
in the first edition, particularly structure assignment and enumerations. It pro-
vides a new form of function declaration that permits cross-checking of defini-
tion with use. It specifies a standard library, with an extensive set of functions 
for performing input and output, memory management, string manipulation, 
and similar tasks. It makes precise the behavior of features that were not 
spelled out in the original definition, and at the same time states explicitly 
which aspects of the language remain machine-dependent. 

This second edition of The C Programming Language describes C as defined 
by the ANSI standard. Although we have noted the places where the language 
has evolved, we have chosen to write exclusively in the new form. For the most 
part, this makes no significant difference; the most visible change is the new 
form of function declaration and definition. Modern compilers already support 
most features of the standard. 

We have tried to retain the brevity of the first edition. C is not a big 
language, and it is not well served by a big book. We have improved the exposi-
tion of critical features, such as pointers, that are central to C programming. 
We have refined the original examples, and have added new examples in several 
chapters. For instance, the treatment of complicated declarations is augmented 
by programs that convert declarations into words and vice versa. As before, all 

ix 



X PREFACE 

examples have been tested directly from the text, which is in machine-readable 
form. 

Appendix A, the reference manual, is not the standard, but our attempt to 
convey the essentials of the standard in a smaller space. It is meant for easy 
comprehension by programmers, but not as a definition for compiler writers-
that role properly belongs to the standard itself. Appendix B is a summary of 
the facilities of the standard library. It too is meant for reference by program-
mers, not implementers. Appendix C is a concise summary of the changes from 
the original version. 

As we said in the preface to the first edition, C "wears well as one's experi-
ence with it grows." With a decade more experience, we still feel that way. 
We hope that this book will help you to learn C and to use it well. 

We are deeply indebted to friends who helped us to produce this second edi-
tion. Jon Bentley, Doug Gwyn, Doug Mcilroy, Peter Nelson, and Rob Pike 
gave us perceptive comments on almost every page of draft manuscripts. We 
are grateful for careful reading by AI Abo, Dennis Allison, Joe Campbell, G. R. 
Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John 
Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We also 
received helpfpl suggestions from Bill Cheswick, Mark Kernighan, Andy 
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Wein-
berger. Dave Prosser answered many detailed questions about the ANSI stand-
ard. We used Bjarne Stroustrup's C++ translator extensively for local testing 
of our programs, and Pave Kristof provided us with an ANSI C compiler for 
final testing; Rich Drechsler helpeg greatly with typesetting. 

Our sincere thankS to all. 

Brian W. Kernighan 
Dennis M. Ritchie 



Preface to the First Edition 

C is a general-purpose programming language which features economy of 
expression, modern control flow and data structures, and a rich set of operators. 
C is not a "very high level" language, nor a "big" one, and is not specialized to 
any particular area of application. But its absence of restrictions and its gen-
erality make it more convenient and effective for many tasks than supposedly 
more powerful languages. 

C was originally designed for and implemented on the UNIX operating sys-
tem on the DEC PDP-11, by Dennis Ritchie. The operating system, the C com· 
piler, and essentially all UNIX applications programs (including all of the 
software used to prepare this book) are written in C. Production compilers also 
exist for several other machines, including the IBM System/370, the Honeywell 
6000, and the Interdata 8/32. C is not tied to any particular hardware or sys-
tem, however, and it is easy to write programs that will run without change on 
any machine that supports C. 

This book is meant to help the reader learn how to program in C. It con-
tains a tutorial introduction to get new users started as soon as possible, 
separate chapters on each major feature, and a reference manual. Most of the 
treatment is based on reading, writing and revising examples, rather than on 
mere statements of rules. For the most part, the examples are complete, real 
programs, rather than isolated fragments. All examples have been tested 
directly from the text, which is in machine-readable form. Besides showing how 
to make effective use of the language, we have also tried where possible to illus-
trate useful algorithms and principles of good style and sound design. 

The book is not an introductory programming manual; it assumes some fam-
iliarity with basic programming concepts like variables, assignment statements, 
loops, and functions. Nonetheless, a novice programmer should be able to read 
along and pick up the language, although access to a more knowledgeable col-
league will help. 

In our experience, C has proven to be a pleasant, expressive, and versatile 
language for a wide variety of programs. It is easy to learn, and it wears well 
as one's experience with it grows. We hope that this book will help you to use it 
well. 

xi 



xii PREFACE TO THE 1ST EDITION 

The thoughtful criticisms and suggestions of many friends and colleagues 
have added greatly to this book and to our pleasure in writing it. In particular, 
Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcilroy, Bill Roome, Bob Rosin, 
and Larry Rosier all read multiple versions with care. We are also indebted to 
AI Abo, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion 
Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter 
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter 
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe 
Ossanna for invaluable assistance with typesetting. 

Brian W. Kernighan 
Dennis M. Ritchie 



Introduction 

C is a general-purpose programming language. It has been closely associ-
ated with the UNIX system where it was developed, since both the system and 
most of the programs that run on it are written in C. The language, however, is 
not tied to any one operating system or machine; and although it has been 
called a "system programming language" because it is useful for writing com-
pilers and operating systems, it has been used equally well to write major pro-
grams in many different domains. 

Many of the important ideas of C stem from the language BCPL, developed 
by Martin Richards. The influence of BCPL on C proceeded indirectly through 
the language B, which was written by Ken Thompson in 1970 for the first 
UNIX system on the DEC PDP-7. 

BCPL and B are "typeless" languages. By contrast, C provides a variety of 
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived data 
types created with pointers, arrays, structures, and unions. Expressions are 
formed from operators and operands; any expression, including an assignment or 
a function call, can be a statement. Pointers provide for machine-independent 
address arithmetic. 

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), selecting 
one of a set of possible cases (switch}, looping with the termination test at the 
top (while, for) or at the bottom (do), and early loop exit (break). 

Functions may return values of basic types, structures, unions, or pointers. 
Any function may be called recursively. Local variables are typically 
"automatic," or created anew with each invocation. Function definitions may 
not be nested but variables may be declared in a block-structured fashion. The 
functions of a C program may exist in separate source files that are compiled 
separately. Variables may be internal to a function, external but known only 
within a single source file, or visible to the entire program. 

A preprocessing step performs macro substitution on program text, inclusion 
of other source files, and conditional compilation. 

C is a relatively "low level" language. This characterization is not 

1 



2 INTRODUCTION 

pejorative; it simply means that C deals with the same sort of objects that most 
computers do, namely characters, numbers, and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented 
by real machines. 

C provides no operations to deal directly with composite objects such as 
character strings, sets, lists, or arrays. There are no operations that manipulate 
an entire array or string, although structures may be copied as a unit. The 
language does not define any storage allocation facility other than static defini-
tion and the stack discipline provided by the local variables of functions; there is 
no heap or garbage collection. Finally, C itself provides no input/output facili-
ties; there are no READ or WRITE statements, and no built-in file access 
methods. All of these higher-level mechanisms must be provided by explicitly-
called functions. Most C implementations have included a reasonably standard 
collection of such functions. 

Similarly, C offers only straightforward, single-thread control flow: tests, 
loops, grouping, and subprograms, but not multiprogramming, parallel opera-
tions, synchronization, or coroutines. 

Although the absence of some of these features may seem like a grave defi-
ciency ("You mean I have to call a function to compare two character 
strings?"), keeping the language down to modest size has real benefits. Since C 
is relatively small, it can be described in a small space, and learned quickly. A 
programmer can reasonably expect to know and understand and indeed regu-
larly use the entire language. 

For many years, the definition of C was the reference manual in the first 
edition of The C Programming Language. In 1983, the American National 
Standards Institute (ANSI) established a committee to provide a modern, 
comprehensive definition of C. The resulting definition, the ANSI standard, or 
"ANSI C," was completed late in 1988. Most of the features of the standard 
are already supported by modern compilers. 

The standard is based on the original reference manual. The language is 
relatively little changed; one of the goals of the standard was to make sure that 
most existing programs would remain valid, or, failing that, that compilers could 
produce warnings of new behavior. 

For most programmers, the most important change is a new syntax for 
declaring and defining functions. A function declaration can now include a 
description of the arguments of the function; the definition syntax changes to 
match. This extra information makes it much easier for compilers to detect 
errors caused by mismatched arguments; in our experience, it is a very useful 
addition to the language. 

There are other small-scale language changes. Structure assignment and 
enumerations, which had been widely available, are now officially part of the 
language. Floating-point computations may now be done in single precision. 
The properties of arithmetic, especially for unsigned types, are clarified. The 
preprocessor is more elaborate. Most of these changes will have only minor 



THE C PROGRAMMING LANGUAGE 3 

effects on most programmers. 
A second significant contribution of the standard is the definition of a library 

to accompany C. It specifies functions for accessing the operating system (for 
instance, to read and write files), formatted input and output, memory alloca-
tion, string manipulation, and the like. A collection of standard headers pro-
vides uniform access to declarations of functions and data types. Programs that 
use this library to interact with a host system are assured of compatible 
behavior. Most of the library is closely modeled on the "standard 110 library" 
of the UNIX system. This library was described in the first edition, and has 
been widely used on other systems as well. Again, most programmers will not 
see much change. 

Because the data types and control structures provided by C are supported 
directly by most computers, the run-time library required to implement self-
contained programs is tiny. The standard library functions are only called 
explicitly, so they can be avoided if they are not needed. Most can be written in 
C, and except for the operating system details they conceal, are themselves port-
able. 

Although C matches the capabilities of many computers, it is independent of 
any particular machine architecture. With a little care· it is easy to write port-
able programs, that is, programs that can be run without change on a variety of 
hardware. The standard makes portability issues explicit, and prescribes a set 
of constants that characterize the machine on which the program is run. 

C is not a strongly-typed language, but as it has evolved, its type-checking 
has been strengthened. The original definition of C frowned on, but permitted, 
the interchange of pointers and integers; this has long since been eliminated, and 
the standard now requires the proper declarations and explicit conversions that 
had already been enforced by good compilers. The new function declarations 
are another step in this direction. Compilers will warn of most type errors, and 
there is no automatic conversion of incompatible data types. Nevertheless, C 
retains the basic philosophy that programmers know what they are doing; it only 
requires that they state their intentions explicitly. 

C, like any other language, has its blemishes. Some of the operators have 
the wrong precedence; some parts of the syntax could be better. Nonetheless, C 
has proven to be an extremely effective and expressive language for a wide 
variety of programming applications. 

The book is organized as follows. Chapter 1 is a tutorial on the central part 
of C. The purpose is to get the reader started as quickly as possible, since we 
believe strongly that the way to learn a new language is to write programs in it. 
The tutorial does assume a working knowledge of the basic elements of pro-
gramming; there is no explanation of computers, of compilation, nor of the 
meaning of an expression like n=n+ 1. Although we have tried where possible to 
show useful programming techniques, the book is not intended to be a reference 
work on data structures and algorithms; when forced to make a choice, we have 
concentrated on the language. 



4 INTRODUCTION 

Chapters 2 through 6 discuss various aspects of C in more detail, and rather 
more formally, than does Chapter 1, although the emphasis is still on examples 
of complete programs, rather than isolated fragments. Chapter 2 deals with the 
basic data types, operators and expressions. Chapter 3 treats control flow: 
if-else, switch, while, for, etc. Chapter 4 covers functions and program 
structure-external variables, scope rules, multiple source files, and so on-and 
also touches on the preprocessor. Chapter 5 discusses pointers and address 
arithmetic. Chapter 6 covers structures and unions. 

Chapter 7 describes the standard library, which provides a common interface 
to the operating system. This library is defined by the ANSI standard and is 
meant to be supported on all machines that support C, so programs that use it 
for input, output, and other operating system access can be moved from one sys-
tem to another without change. 

Chapter 8 describes an interface between C programs and the UNIX operat-
ing system, concentrating on input/output, the file system, and storage alloca-
tion. Although some of this chapter is specific to UNIX systems, programmers 
who use other systems should still find useful material here, including some 
insight into how one version of the standard library is implemented, and sugges-
tions on portability. 

Appendix A contains a language reference manual. The official statement of 
the syntax and semantics of C is the ANSI standard itself. That document, 
however, is intended foremost for compiler writers. The reference manual here 
conveys the definition of the language more concisely and without the same 
legalistic style. Appendix B is a summary of the standard library, again for 
users rather than implementers. Appendix C is a short summary of changes 
from the original language. In cases of doubt, however, the standard and one's 
own compiler remain the final authorities on the language. 



cHAPTER 1: A Tutorial Introduction 

Let us begin with a quick introduction to C. Our aim is to show the essen-
tial elements of the language in real programs, but without getting bogged down 
in details, rules, and exceptions. At this point, we are not trying to be complete 
or even precise (save that the examples are meant to be correct). We want to 
get you as quickly as possible to the point where you can write useful programs, 
and to do that we have to concentrate on the basics: variables and constants, 
arithmetic, control flow, functions, and the rudiments of input and output. We 
are intentionally leaving out of this chapter features of C that are important for 
writing bigger programs. These include pointers, structures, most of C's rich set 
of operators, several control-flow statements, and the standard library. 

This approach has its drawbacks. Most notable is that the complete story on 
any particular language feature is not found here, and the tutorial, by being 
brief, may also be misleading. And because the examples do not use the full 
power of C, they are not as concise and elegant as they might be. We have 
tried to minimize these effects, but be warned. Another drawback is that later 
chapters will necessarily repeat some of this chapter. We hope that the repeti-
tion will help you more than it annoys. 

In any case, experienced programmers should be able to extrapolate from the 
material in this chapter to their own programming needs. Beginners should sup-
plement it by writing small, similar programs of their own. Both groups can use 
it as a framework on which to hang the more detailed descriptions that begin in 
Chapter 2. 

1. 1 Getting Started 
The only way to learn a new programming language is by writing programs 

in it. The first program to write is the same for all languages: 

Print the words 
hello, world 

This is the big hurdle; to leap over it you have to be able to create the program 

5 



6 A TUTORIAL INTRODUCTION CHAPTER 1 

text somewhere, compile it successfully, load it, run it, and find out where your 
output went. With these mechanical details mastered, everything else is com-
paratively easy. 

In C, the program to print "hello, world" is 
#include <stdio.h> 

main() 
{ 

printf("hello, world\n"); 
} 

Just how to run this program depends on the system you are using. As a 
specific example, on the UNIX operating system you must create the program in 
a file whose name ends in ". c", such as hello. c, then compile it with the 
command 

cc hello.c 

If you haven't botched anything, such as omitting a character or misspelling 
something, the compilation will proceed silently, and make an executable file 
called a. out. If you run a. out by typing the command 

a.out 

it will print 
hello, world 

On other systems, the rules will be different; check with a local expert. 
Now for some explanations about the program itself. A C program, what-

ever its size, consists of functions and variables. A function contains state-
ments that specify the computing operations to be done, and variables store 
values used during the computation. C functions are like the subroutines and 
functions of Fortran or the procedures and functions of Pascal. Our example is 
a function named, main. Normally you are at liberty to give functions whatever 
names you like, but "main" is special-your program begins executing at the 
beginning of main. This means that every program must have a main some-
where. 

main will usually call other functions to help perform its job, some that you 
wrote, and others from libraries that are provided for you. The first line of the 
program, 

#include <stdio.h> 

tells the compiler to include information about the standard input/output 
library; this line appears at the beginning of many C source files. The standard 
library is described in Chapter 7 and Appendix B. 

One method of communicating data between functions is for the calling 
function to provide a list of values, called arguments, to the function it calls. 
The parentheses after the function name surround the argument list. In this 



SECTION 1.1 

#include <stdio.h> 

main() 

{ 

GETTING STARTED 7 

include information about standard library 

define a function named main 
that receives no argument values 

statements of main are enclosed in braces 

print£( "hello, world\n"); main calls library function print£ 
to print this sequence of characters; 
\n represents the newline character } 

The first C program. 

example, main is defined to be a function that expects no arguments, which is 
indicated by the empty list ( ) . 

The statements of a function are enclosed in braces { } . The function main 
contains only one statement, 

print£( "hello, world\n"); 

A function is called by naming it, followed by a parenthesized list of arguments, 
so this calls the function printf with the argument "hello, world\n". 
printf is a library function that prints output, in this case the string of char-
acters between the quotes. 

A sequence of characters in double quotes, like "hello, world\n ", is 
called a character string or string constant. For the moment our only use of 
character strings will be as arguments for printf and other functions. 

The sequence \n in the string is C notation for the newline character, which 
when printed advances the output to the left margin on the next line. If you 
leave out the \n (a worthwhile experiment), you will find that there is no line 
advance after the output is printed. You must use \n to include a newline 
character in the printf argument; if you try something like 

printf("hello, world 
II ) ; 

the C compiler will produce an error message. 
printf never supplies a newline automatically, so several calls may be used 

to build up an output line in stages. Our -first program could just as well have 
been written 



8 A TUTORIAL INTRODUCTION 

#include <stdio.h> 

main() 
{ 

} 

print£ ( "hello, " ) ; 
print£ ("world") ; 
print£ ( "'\n") ; 

to produce identical output. 

CHAPTER 1 

Notice that '\n represents only a single character. An escape sequence like 
'\n provides a general and extensible mechanism for representing hard-to-type 
or invisible characters. Among the others that C provides are '\ t for tab, '\b 
for backspace, '\" for the double quote, and '\ '\ for the backslash itself. There 
is a complete list in Section 2.3. 

Exercise 1-1. Run the "hello, world" program on your system. Experiment 
with leaving out parts of the program, to see what error messages you get. 0 

Exercise 1-2. Experiment to find out what happens when printf's argument 
string contains '\c, where c is some character not listed above. 0 

1.2 Variables and Arithmetic Expressions 
The next program uses the formula • C- (5/9)(" F-32) to print the follow-

ing table of Fahrenheit temperatures and their centigrade or Celsius equivalents: 
0 -17 
20 -6 
40 4 
60 15 
80 26 
100 37 
120 48 
140 60 
160 71 
180 82 
200 93 
220 104 
240 115 
260 126 
280 137 
300 148 

The program itself still consists of the det:inition of a single function named 
main. It is longer than the one that printed "hello, world", but not compli-
cated. It introduces several new ideas, including comments, declarations, vari-
ables, arithmetic expressions, loops, and formatted output. 



SECTION 1.2 VARIABLES AND ARITHMETIC EXPRESSIONS 9 

#include <stdio.h> 

I* print Fahrenheit-Celsius table 
for fahr = 0, 20, ... , 300 */ 

main() 
{ 

} 

int fahr, celsius; 
int lower, upper, step; 

lower = 0; 
upper = 300; 
step = 20; 

fahr = lower; 

/* lower limit of temperature table */ 
/* upper limit */ 
/* step size */ 

while (fahr <= upper) { 

} 

celsius = 5 * (fahr-32) I 9; 
printf("%d\t%d\n", fahr, celsius); 
fahr = fahr + step; 

The two lines 
/* print Fahrenheit-Celsius table 

for fahr = o, 20, ... , 300 *I 

are a comment, which in this case explains briefly what the program does. Any 
characters between / * and */ are ignored by the compiler; they may be used 
freely to make a program easier to understand. Comments may appear any-
where a blank or tab or newline can. 

In C, all variables must be declared before they are used, usually at the 
beginning of the function before any executable statements. A declaration 
announces the properties of variables; it consists of a type name and a list of 
variables, such as 

int fahr, celsius; 
int lower, upper, step; 

The type int means that the variables listed are integers, by contrast with 
float, which means floating point, i.e., numbers that may have a fractional 
part. The range of both int and float depends on the machine you are 
using; 16-bit ints, which lie between -32768 and +32767, are common, as are 
32-bit ints. A float number is typically a 32-bit quantity, with at least six 
significant digits and magnitude generally between about 10-38 and 10+38 • 

C provides several other basic data types besides int and float, including: 

char 
short 
long 
double 

character-a single byte 
short integer 
long integer 
double-precision floating point 



10 A TUTORIAL INTRODUCTION CHAPTER 1 

The sizes of these objects are also machine-dependent. There are also arrays, 
structures and unions of these basic types, pointers to them, and functions that 
return them, all of which we will meet in due course. 

Computation in the temperature conversion program begins with the assign-
ment statements 

lower = 0; 
upper = 300; 
step = 20; 
fahr = lower; 

which set the variables to their initial values. Individual statements are ter-
minated by semicolons. 

Each line of the table is computed the same way, so we use a loop that 
repeats once per output line; this is the purpose of the while loop 

while (fahr <= upper) { 

} 

The while loop operates as follows: The condition in parentheses is tested. If 
it is true (fahr is less than or equal to upper), the body of the loop (the three 
statements enclosed in braces) is executed. Then the condition is re-tested, and 
if true, the body is executed again. When the test becomes false (fahr exceeds 
upper) the loop ends, and execution continues at the statement that follows the 
loop. There are no further statements in this program, so it terminates. 

The body of a while can be one or more statements enclosed in braces, as 
in the temperature converter, or a single statement without braces, as in 

while (i < j) 
i = 2 * i; 

In either case, we will always indent the statements controlled by the while by 
one tab stop (which we have shown as four spaces) so you can see at a glance 
which statements are inside the loop. The indentation emphasizes the logical 
structure of the program. Although C compilers do not care about how a pro-
gram looks, proper indentation and spacing are critical in making programs easy 
for people to read. We recommend writing only one statement per line, and 
using blanks around operators to clarify grouping. The position of braces is less 
important, although people hold passionate beliefs. We have chosen one of 
several popular styles. Pick a style that suits you, then use it consistently. 

Most of the work gets done in the body of the loop. The Celsius tempera-
ture is computed and assigned to the variable celsius by the statement 

celsius = 5 * (fahr-32) I 9; 

The reason for multiplying by 5 and then dividing by 9 instead of just multiply-
ing by 5/9 is that in C, as in many other languages, integer division truncates: 
any fractional part is discarded. Since 5 and 9 are integers, 5/9 would be 
truncated to zero and so all the Celsius temperatures would be reported as zero. 



SECTION 1.2 VARIABLES AND ARITHMETIC EXPRESSIONS 11 

This example also shows a bit more of how print£ works. print£ is a 
general-purpose output formatting function, which we will describe in detail in 
Chapter 7. Its first argument is a string of characters to be printed, with each 
% indicating where one of the other (second, third, .. .) arguments is to be substi-
tuted, and in what form it is to be printed. For instance, %d specifies an integer 
argument, so the statement 

printf("%d\t%d\n", fahr, celsius); 

causes the values of the two integers fahr and celsius to be printed, with a 
tab (\ t) between them. 

Each % construction in the first argument of print£ is paired with the 
corresponding second argument, third argument, etc.; they must match up prop-
erly by number and type, or you'll get wrong answers. 

By the way, print£ is not part of the C language; there is no input or out-
put defined in C itself. prihtf is just a useful function from the standard 
library of functions that are normally accessible to C programs. The behavior 
of print£ is defined in the ANSI standard, however, so its properties should be 
the same with any compiler and library that conforms to the standard. 

In order to concentrate on C itself, we won't talk much about input and out-
put until Chapter 7. In particular, we will defer formatted input until then. If 
you have to input numbers, read the discussion of the function scan£ in Sec-
tion 7 .4. scan£ is like print£, except that it reads input instead of writing 
output. 

There are a couple of problems with the temperature conversion program. 
The simpler one is that the output isn't very pretty because the numbers are rtot 
right-justified. That's easy to fix; if we augment each %d in the print£ state-
ment with a width, the numbers printed will be right-justified in their fields. 
For instance, we might say 

printf(""3d "6d\n", fahr, celsius); 

to print the first number of each line in a field three digits wide, and the second 
in a field six digits wide, like this: 

0 -17 
20 -6 
40 4 
60 15 
80 26 

100 37 

The more serious problem is that because we have used integer arithmetic, 
the Celsius temperatures are not very accurate; for instance, 0 • F is actually 
about -11.s·c, not -17. To get more accurate answers, we should use 
floating-point arithmetic instead of integer. This requires some changes in the 
program. Here is a second version: 



12 A TUTORIAL INTRODUCTION CHAPTER l 

#include <stdio.h> 

I* print Fahrenheit-Celsius table 
for fahr = 0, 20, ... , 300; floating-point version*/ 

main() 
{ 

} 

float fahr, celsius; 
int lower, upper, step; 

lower = 0; 
upper = 300; 
step = 20; 

fahr = lower; 

/* lower limit of temperature table */ 
I* upper limit */ 
/* step size */ 

while (fahr <= upper) { 

} 

celsius = (5.0/9.0) * (fahr-32.0); 
printf("%3.0f %6.1f\n", fahr, celsius); 
fahr = fahr + step; 

This is much the same as before, except that fahr and celsius are 
declared to be float, and the formula for conversion is written in a more 
natural way. We were unable to use 5/9 in the previous version because 
integer division would truncate it to zero. A decimal point in a constant indi-
cates that it is floating point, however, so 5. 0/9. 0 is not truncated because it 
is the ratio of two floating-point values. 

If an arithmetic operator has integer operands, an integer operation is per-
formed. If an arithmetic operator has one floating-point operand and one 
integer operand, however, the integer will be converted to floating point before 
the operation is done. If we had written fahr-32, the 32 would be automati-
cally converted to floating point. Nevertheless, writing floating-point constants 
with explicit decimal points even when they have integral values emphasizes 
their floating-point nature for human rea9ers. 

The detailed rules for when integers are converted to floating point are in 
Chapter 2. For now, notice that the assignment 

fahr = lower; 
and the test 

while (fahr <= upper) 

also work in the natural way-the int is converted to float before the opera-
tion is done. 

The printf conversion specification %3. Of says that a floating-point 
number (here fahr) is to be printed at least three characters wide, with no 
decimal point and no fraction digits. %6 . 1 f describes another number 
(celsius) that is to be printed at least six characters wide, with 1 digit after 
the decimal point. The output looks like this: 



SECTION 1.3 

0 -17.8 
20 -6.7 
40 4.4 

THE FOR STATEMENT 13 

Width and prec1s1on may be omitted from a specification: %6£ says that the 
number is to be at least six characters wide; %. 2£ specifies two characters after 
the decimal point, but the width is not constrained; and %£ merely says to print 
the number as floating point. 

%d print as decimal integer 
%6d print as decimal integer, at least 6 characters wide 
%£ print as floating point 
%6£ print as floating point, at least 6 characters wide 
%. 2£ print as floating point, 2 characters after decimal point 
%6. 2£ print as floating point, at least 6 wide and 2 after decimal point 

Among others, print£ also recognizes %o for octal, %x for hexadecimal, %c for 
character, %s for character string, and %%for % itself. 

Exercise l-3. Modify the temperature conversion program to print a heading 
above the table. 0 

Exercise l-4. Write a program to print the corresponding Celsius to Fahrenheit 
table. o 

1.3 The For Statement 
There are plenty of different ways to write a program for a particular task. 

Let's try a variation on the temperature converter. 
#include <stdio.h> 

/* print Fahrenheit-Celsius table *' 
main() 
{ 

} 

int fahr; 

for (fahr = 0; fahr <= 300; fahr = fahr + 20) 
printf("%3d %6.1£\n", fahr, (5.0/9.0)*(fahr-32)); 

This produces the same answers, but it certainly looks different. One major 
change is the elimination of most of the variables; only fahr remains, and we 
have made it an int. The lower and upper limits and the step size appear only 
as constants in the for statement, itself a new construction, and the expression 
that computes the Celsius temperature now appears as the third argument of 
print£ instead of as a separate assignment statement. 

This last change is an instance of a general rule-in any context where it is 



14 A TUTORIAL INTRODUCTION CHAPTER 1 

permissible to use the value of a vari:.ible of some type, you can use a more com-
plicated eApression of that type. Since the third argument of printf must be 
a floating-point value to match the %6. 1 f, any floating-point expression can 
occur there. 

The for statement is a loop, a generalization of the while. If you compare 
it to the earlio...r while, its operation should be clear. Within the parentheses, 
there are three parts, separated by semicolons. The first part, the initialization 

fahr = 0 

is done once, before the loop proper is entered. The second part is the test or 
condition that controls the loop: 

fahr <= 300 

This condition is evaluated; if it is true, the body of the loop (here a single 
printf) is executed. Then the increment step 

fahr = fahr + 20 

is executed, and the condition re-evaluated. The loop termhates if the condition 
has become false. As with the while, the body of the loop can be a single 
statement, or a group of statements enclosed in braces. The initialization, con-
dition, and increment can be any expressions. 

The choice between while and for is arbitrary, based on which seems 
clearer. The fo;r is usually appropriate for loops 'in which the initialization aud 
increment are single statements and logically related, since it is more compact 
than while and it keeps the loop control statements together in one place. 

Exercise 1-5. Modify the temperature conversion program to print the table in 
reverse order, that is, from 300 degrees to 0. D 

1.4 Symbolic Constants 
A final observation before we leave temperature conversion forever. It's bad 

practice to bury "magic numbers" like 300 and 20 in a program; they convey 
little information to someone who might have to read the program later, and 
they are hard to change In a systematic way. One way to deal with magic 
numbers is to give them names. A #define line defines a sym-
bolic name or symbolic constant to be a particular string of characters: 

#define name replacement text 

Thereafter, any occurrence of name (not in quotes and not part of another 
name) will be replaced by the corresponding replacement text. The name has 
the same form as a variable name: a sequence of letters and digits that begins 
with a letter. The replacement text can be any sequence of characters; it is not 
limited to numbers. 



SECTION I.S CHARACTER INPUT AND OUTPUT 15 

#include <stdio.h> 

#define LOWER 0 /* lower limit of table */ 
#define UPPER 300 /* upper limit */ 
#define STEP 20 /* step size */ 

I* pr-int Fahrenheit-Celsius table */ 
main() 
{ 

int fahr; 

for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP) 
printf("%3d %6.1f\n", fahr, (5.0/9.0)*(fahr-32)); 

} 

The quantities LOWER, UPPER and STEP are symbolic constants, not variables, 
so they do not appear in declarations. Symbolic constant names are convention-
ally written in upper case so they can be readily distinguished from lower case 
variable names. Notice that there is no semicolon at the end of a #define 
line. 

1.5 Character Input and Output 
We are now going to consider a family of related programs for processing 

character data. You will find that many programs are just expanded versions of 
the prototypes that we discuss here. 

The model of input and output supported by the standard library is very sim-
ple. Text input or output, regardless of where it originates or where it goes to, 
is dealt with as streams of characters. A text stream is a sequence ofcharac-
ters divided into lines; each line consists of zero or more characters followed by 
a newline character. It is the responsibility of the library to make each input or 
output stream conform to this model; the C programmer using the library need 
not worry about how lines are represented outside the program. 

The standard library provides several functions for reading or writing one 
character at a time, of which getchar and putchar are the simplest. Each 
time it is called, getchar reads the next input character from a text stream 
and returns that as its value. That is, after 

c = getchar() 

the variable c contains the next character of input. The characters normally 
come from the keyboard; input from files is discussed in Chapter 7. 

The function putchar prints a character each time it is called: 
putchar(c) 

prints the contents of the integer variable c as a character, usually on the 
screen. Calls to putchar and print£ may be interleaved; the output will 



16 A TUTORIAL INTRODUCTION CHAPTER l 

appear in the order in which the calls are made. 

1.5. 1 File Copying 

Given getchar and putchar, you can write a surprising amount of useful 
code without knowing anything more about input and output. The simplest 
example is a program that copies its input to its output one character at a time: 

read a character 
while (character is not end -of-file indicator) 

output the character just read 
read a character 

Converting this into C gives 
#include <stdio.h> 

I* copy input to output; 1st version */ 
main() 
{ 

} 

int c; 

c = getchar(); 
while (c I= EOF) { 

putchar(c); 
c = getchar(); 

} 

The relational operator I = means "not equal to." 
What appears to be a character on the keyboard or screen is of course, like 

everything else, stored internally just as a bit pattern. The type char is specifi-
cally meant for storing such character data, but any integer type can be used. 
We used int for a subtle but important reason. 

The problem is distinguishing the end of the input from valid data. The 
solution is that getchar returns a distinctive value when there is no more 
input, a value that cannot be confused with any real character. This value is 
called EOF, for "end of file." We must declare c to be a type big enough to 
hold any value that getchar returns. We can't use char since c must be big 
enough to hold EOF in addition to any possible char. Therefore we use int. 

EOF is an integer defined in <stdio. h>, but the specific numeric value 
doesn't matter as long as it is not the same as any char value. By using the 
symbolic constant, we are assured that nothing in the program depends on the 
specific numeric value. 

The program for copying would be written more concisely by experienced C 
programmers. In C, any assignment, such as 

c = getchar() 



SECTION 1.5 CHARACTER INPUT AND OUTPUT 17 

is an expression and has a value, which is the value of the left hand side after 
the assignment. This means that an assignment can appear as part of a larger 
expression. If the assignment of a character to c is put inside the test part of a 
while loop, the copy program can be written this way: 

#include <stdio.h> 

I* copy input to output; 2nd version */ 
main() 
{ 

} 

int c; 

while ((c = qetchar()) I= EOF) 
put char (c) ; 

The while gets a character, assigns it to c, and then tests whether the charac-
ter was the end-of-file signal. If it was not, the body of the while is executed, 
printing the character. The while then repeats. When the end of the input is 
finally reached, the while terminates and so does main. 

This version centralizes the input-there is now only one reference to 
getchar-and shrinks the program. The resulting program is more compact, 
and, once the idiom is mastered, easier to read. You'll see this style often. (It's 
possible to get carried away and create impenetrable code, however, a tendency 
that we will try to curb.) 

The parentheses around the assignment within the condition are necessary. 
The precedence of I= is higher than that of =, which means that in the absence 
of parentheses the relational test I = would be done before the assignment =. So 
the statement 

c = qetchar() I= EOF 

is equivalent to 

c = (qetchar() I= EOF) 

This has the undesired effect of setting c to 0 or 1, depending on whether or not 
the call of getchar encountered end of file. (More on this in Chapter 2.) 

Exercise 1-6. Verify that the expression getchar ( ) I= EOF is 0 or 1. 0 

Exercise 1-7. Write a program to print the value of EOF. 0 

1.5.2 Character Counting 

The next program counts characters; it is similar to the copy program. 



18 A TUTORIAL INTRODUCTION 

#include <stdio.h> 

/* count characters in input; 1st version */ 
main() 
{ 

} 

long nc; 

nc = 0; 
while (getchar() I= EOF) 

++nc; 
printf ( 11 %ld\n 11 , nc) ; 

The statement 
++nc; 

CHAPTER I 

presents a new operator, ++, which means increment by one. You could instead 
write nc = nc+ 1 but ++nc is more concise and often more efficient. There is a 
corresponding operator -- to decrement by 1. The operators ++ and --can be 
either prefix operators (++nc) or postfix (nc++); these two forms have dif-
ferent values in expressions, as will be shown in Chapter 2, but ++nc and nc++ 
both increment nc. For the moment we will stick to the prefix form. 

The character counting program accumulates its count in a long variable 
instead of an int. long integers are at least 32 bits. Although on some 
machines, int and long are the same size, on others an int is 16 bits, with a 
maximum value of 32767, and it would take relatively little input to overflow an 
int counter. The conversion specification %ld tells print£ that the 
corresponding argument is a long integer. 

It may be possible to cope with even bigger numbers by using a double 
(double precision float). We will also use a for statement instead of a 
while, to illustrate another way to write the loop. 

#include <stdio.h> 

I* count characters in input; 2nd version */ 
main() 
{ 

double nc; 

for (nc = 0; getchar() I= EOF; ++nc) 

' printf ( 11 %. Of\n 11 , nc); 
} 

print£ uses %£ for both float and double; %. Of suppresses printing of the 
decimal point and the fraction part, which is zero. 

The body of this for loop is empty, because all of the work is done in the 
test and increment parts. But the grammatical rules of C require that a for 
statement have a body. The isolated semicolon, called a null statement, is there 



SECTION 1.5 CHARACTER INPUT AND OUTPUT 19 

to satisfy that requirement. We put it on a separate line to make it visible. 
Before we leave the character counting program, observe that if the input 

contains no characters, the while or for test fails on the very first call to 
getchar, and the program produces zero, the right answer. This is important. 
One of the nice things about while and for is that they test at the top of the 
loop, before proceeding with the body. If there is nothing to do, nothing is done, 
even if that means never going through the loop body. Programs should act 
intelligently when given zero-length input. The while and for statements 
help ensure that programs do reasonable things with boundary conditions. 

1.5.3 Line Counting 

The next program counts input lines. As we mentioned above, the standard 
library ensures that an input text stream appears as a sequence of lines, each 
terminated by a newline. Hence, counting lines is just counting newlines: 

#include <stdio.h> 

/* count lines in input */ 
main() 
{ 

} 

int c, nl; 

nl = 0; 
while ((c = getchar()) I= EOF) 

if (c == '\.n' > 
++nl; 

printf ( ""d\.n", nl) ; 

The body of the while now consists of an if, which in turn controls the 
increment ++nl. The if statement tests the parenthesized condition, and if the 
condition is true, executes the statement (or group of statements in braces) that 
follows. We have again indented to show what is controlled by what. 

The double equals sign == is the C notation for "is equal to" {like Pascal's 
single = or Fortran's . EQ.). This symbol is used to distinguish the equality test 
from the single = that C uses for assignment. A word of caution: newcomers to 
C occasionally write = when they mean ==. As we will see in Chapter 2, the 
result is usually a legal expression, so you will get no warning. 

A character written between single quotes represents an integer value equal 
to the numerical value of the character in the machine's character set. This is 
called a character constant, although it is just another way to write a small 
integer. So, for example, 'A' is a character constant; in the ASCII character 
set its value is 65, the internal representation of the character A. Of course 'A' 
is to be preferred over 65: its meaning is obvious, and it is independent of a par-
ticular character set. 

The escape sequences used in string constants are also legal in character 



20 A TUTORIAL INTRODUCTION CHAPTER 1 

constants, so '\n' stands for the value of the newline character, which is 10 in 
ASCII. You should note carefully that '\n' is a single character, and in 
expressions is just an integer; on the other hand, 11 \n 11 is a string constant that 
happens to contain only one character. The topic of strings versus characters is 
discussed further in Chapter 2. 

Exercise 1-8. Write a program to count blanks, tabs, and newlines. D 

Exercise 1-9. Write a program to copy its input to its output, replacing each 
string of one or more blanks by a single blank. 0 

Exercise 1-10. Write a program to copy its input to its output, replacing each 
tab by \t, each backspace by \b, and each backslash by \\. This makes tabs 
and backspaces visible in an unambiguous way. o 

1.5.4 Word Counting 

The fourth in our series of useful programs counts lines, words, and charac-
ters, with the loose definition that a word is any sequence of characters that 
does not contain a blank, tab or newline. This is a bare-bones version of the 
UNIX program we. 

#include <stdio.h> 

#define IN 1 
#define OUT 0 

/* inside a word */ 
/* outside a word */ 

f* count lines, words, and characters in input */ 
main() 
{ 

} 

int c, nl, nw, nc, state; 

state = OUT; 
nl = nw = nc = 0; 
while ((c = getchar()) I= EOF) { 

++nc; 

} 

if ( c == '\n' ) 
++nl; 

if (c ==''II c == '\n' II c == '\t') 
state = OUT; 

else if (state == OUT) { 
state = IN; 
++nw; 

} 

printf ( "%d %d %d\n" , nl, nw, nc) ; 

Every time the program encounters the first character of a word, it counts 



SECTION 1.5 CHARACTER INPUT AND OUTPUT 21 

one more word. The variable state records whether the program is currently 
in a word or not; initially it is "not in a word," which is assigned the value OUT. 
We prefer the symbolic constants IN and OUT to the literal values 1 and 0 
because they make the program more readable. In a program as tiny as this, it 
makes little difference, but in larger programs, the increase in clarity is well 
worth the modest extra effort to write it this way from the beginning. You'll 
also find that it's easier to make extensive changes in programs where magic 
numbers appear only as symbolic constants. 

The line 

nl = nw = nc = 0; 

sets all three variables to zero. This is not a special case, but a consequence of 
the fact that an assignment is an expression with a value and assignments asso-
ciate from right to left. It's as if we had written 

nl = (nw = (nc = 0)); 

The operator : : means OR, so the line 

if (c == ' ' :: c == '\n' :: c == '\t') 

says "if c is a blank or c is a or c is a tab". (Recall that the escape 
sequence \t is a visible representation of the tab character.) There is a 
corresponding operator && for AND; its precedence is just higher than : :. 
Expressions connected by && or : : are evaluated left to right, and it is 
guaranteed that evaluation will stop as soon as the truth or falsehood is known. 
If c is a blank, there is no need to test whether it is a newline or tab, so these 
tests are not made. This isn't particularly important here, but is significant in 
more complicated situations, as we will soon see. 

The example also shows an else, which specifies an alternative action if the 
condition part of an if statement is false. The general form is 

if (expression) 
statement 1 

else 
statement 2 

One and only one of the two statements associated with an if-else is per-
formed. If the expression is true, statement 1 is executed; if not, statement 2 is 
executed. Each statement can be a single statement or several in braces. In the 
word count program, the one after the else is an if that controls two state-
ments in braces. 

Exercise 1-11. How would you test the word count program? What kinds of 
input are most likely to uncover bugs if there are any? 0 

Exercise 1-12. Write a program that prints its input one word per line. o 



22 A TUTORIAL INTRODUCTION CHAPTER I 

1.6 Arrays 
Let us write a program to count the number of occurrences of each digit, of 

white space characters (blank, tab, newline), and of all other characters. This 
is artificial, but it permits us to illustrate several aspects of C in one program. 

There are twelve categories of input, so it is convenient to use an array to 
hold the number of occurrences of each digit, rather than ten individual vari-
ables. Here is one version of the program: 

#include 

/* count digits, white space, others */ 
main() 
{ 

} 

int c, i, nwhite, nother; 
int ndigit[10]; 

nwhite = nother = 0; 
for (i = 0; i < 10; ++i) 

ndigit[i] = 0; 

while ((c = getchar()) I= EOF) 
if (C >= '0' && C <= '9') 

++ndigit[c-'0']; 
else if (c =='' :: c == '\n' :: c == '\t') 

++nwhite; 

++nother; 

printf("digits ="); 
for (i = 0; i < 10; ++i) 

print£(" %d", ndigit[i]); 
print£(", white space = %d, other = %d\n", 

nwhi te , nother ) ; 

The output of this program on itself is 
digits = 9 3 0 0 0 0 0 0 0 1, white space = 123, other = 345 

The declaration 
int ndigit[10]; 

declares ndigi t to be an array of 10 integers. Array subscripts always start at 
zero in C, so the elements are ndigi t [ 0 1, ndigi t [ 1 1, ... , ndigi t [ 9 1. This 
is reflected in the for loops that initialize and print the array. 

A subscript can be any integer expression, which includes integer variables 
like i, and integer constants. 

This particular program relies on the properties of the character representa-
tion of the digits. For example, the test 



SECTION 1.6 ARRAYS 23 

if (c >= '0' && c <= '9') ... 

determines whether the character in c is a digit. If it is, the numeric value of 
that digit is 

c - '0, 

This works only if '0 ', ' 1 ', ... , '9 ' have consecutive increasing values. For-
tunately, this is true for all character sets. 

By definition, chars are just small integers, so char variables and constants 
are identical to ints in arithmetic expressions. This is natural and convenient; 
for example, c-' 0' is an integer expression with a value between 0 and 9 
corresponding to the character '0' to '9' stored in c, and is thus a valid sub-
script for the array ndigi t. 

The decision as to whether a character is a digit, white space, or something 
else is made with the sequence 

if (c >= '0' && c <= '9') 
++ndigit[c-'0']; 

else if (c =='' ll c == '\n' ll c -- '\t') 
++nwhite; 

else 
++nother; 

The pattern 
if (condition 1 ) 

statement, 
else if (condition 2 ) 

statement 2 

else 
statement, 

occurs frequently in programs as a way to express a multi-way decision. The 
conditions are evaluated in order from the top until some condition is satisfied; 
at that point the corresponding statement part is executed, and the entire con-
struction is finished. (Any statement can be several statements enclosed in 
braces.) If none of the conditions is satisfied, the statement after the final 
else is executed if it is present. If the final else and statement are omitted, 
as in the word count program, no action takes place. There can be any number 
of 

else if (condition) 
statement 

groups between the initial if and the final else. 
As a matter of style, it is advisable to format this construction as we have 

shown; if each if were indented past the previous else, a long sequence of 
decisions would march off the right side of the page. 



24 A TUTORIAL INTRODUCTION CHAPTER I 

The switch statement, to be discussed in Chapter 3, provides another way 
to write a multi-way branch that is particularly suitable when the condition is 
whether some integer or character expression matches one of a set of constants. 
For contrast, we will present a switch version of this program in Section 3.4. 

Exercise l-13. Write a program to print a histogram of the lengths of words in 
its input. It is easy to draw the histogram with the bars horizontal; a vertical 
orientation is more challenging. 0 

Exercise l-14. Write a program to print a histogram of the frequencies of dif-
ferent characters in its input. o 

1.7 Functions 
In C, a function is equivalent to a subroutine or function in Fortran, or a 

procedure or function in Pascal. A function provides a convenient way to 
encapsulate some computation, which can then be used without worrying about 
its implementation. With properly designed functions, it is possible to ignore 
how a job is done; knowing what is done is sufficient. C makes the use of func-
tions easy, convenient and efficient; you will often see a short function defined 
and called only once, just because it clarifies some piece of code. 

So far we have used only functions like print£, getchar, and putchar 
that have been provided for us; now it's time to write a few of our own. Since C 
has no exponentiation operator like the ** of Fortran, let us illustrate the 
mechanics of function definition by writing a function power ( m, n) to raise an 
integer m to a positive integer power n. That is, the value of power ( 2 , 5 ) is 
32. This function is not a practical exponentiation routine, since it handles only 
positive powers of small integers, but it's good enough for illustration. (The 
standard library contains a function pow ( x, y) that computes xY.) 

Here is the function power and a main program to exercise it, so you can 
see the whole structure at once. 

#include <stdio.h> 

int power(int m, int n); 

I• test power function •I 
main() 
{ 

} 

int i; 

for (i = 0; i < 10; ++i) 
printf ( "%d "d %d\n", i, power( 2, i), power( -3, i)); 

return 0; 



SECTION 1.7 

/* power: raise base to n-th power; n >= 0 */ 
int power(int base, int n) 
{ 

} 

p = 1; 
for (i = 1; i <= n; ++i) 

p = p * base; 
return p; 

A function definition has this form: 
return-type function-name (parameter declarations, if any) 
{ 

} 

declarations 
statements 

FUNCTIONS 25 

Function definitions can appear in any order, and in one source file or several, 
although no function can be split between files. If the source program appears 
in several files, you may have to say more to compile and load it than if it all 
appears in one, but that is an operating system matter, not a language attribute. 
For the moment, we will assume that both functions are in the same file, so 
whatever you have learned about running C programs will still work. 

The function power is called twice by main, in the line 
printf("%d %d %d\n", i, power(2,i), power(-3,i)); 

Each call passes two arguments to power, which each time returns an integer 
to be formatted and printed. In an expression, power ( 2 , i ) is an integer just 
as 2 and i are. (Not all functions produce an integer value; we will take this 
up in Chapter 4.) 

The first line of power itself, 
int power(int base, int n) 

declares the parameter types and names, and the type of the result that the 
function returns. The names used by power for its parameters are local to 
power, and are not visible to any other function: other routines can use the 
same names without conflict. This is also true of the variables i and p: the i in 
power is unrelated to the i in main. 

We will generally use parameter for a variable named in the parenthesized 
list in a function definition, and argument for the value used in a call of the 
function. The terms formal argument and actual argument are sometimes used 
for the same distinction. 

The value that power computes is returned to main by the return state-
ment. Any expression may follow return: 

return expression ; 



26 A TUTORIAL INTRODUCTION CHAPTER I 

A function need not return a value; a return statement with no expression 
causes control, but no useful value, to be returned to the caller, as does "falling 
off the end" of a function by reaching the terminating right brace. And the cal-
ling function can ignore a value returned by a function. 

You may have noticed that there is a return statement at the end of main. 
Since main is a function like any other, it may return a value to its caller, 
which is in effect the environment in which the program was executed. Typi-
cally, a return value of zero implies normal termination; non-zero values signal 
unusual or erroneous termination conditions. In the interests of simplicity, we 
have omitted return statements from our main functions up to this point, but 
we will include them hereafter, as a reminder that programs should return 
status to their environment. 

The declaration 
int power(int m, int n); 

just before main says that power is a function that expects two int arguments 
and returns an int. This declaration, which is called a function prototype, has 
to agree with the definition and uses of power. It is an error if the definition 
of a function or any uses of it do not agree with its prototype. 

Parameter names need not agree. Indeed, parameter names are optional in a 
function prototype, so for the prototype we could have written 

int power(int, int); 

Well-chosen names are good documentation, however, so we will often use them. 

A note of history: The biggest change between ANSI C and earlier versions 
is how functions are declared and defined. In the original definition of C, the 
power function would have been written like this: 

I* power: raise base to n-th power; n >= 0 */ 
I* (old-style version) */ 
power(base, n) 
int base, n; 
{ 

} 

int i, p; 

p = 1; 
for (i = 1; i <= n; ++i) 

p = p * base; 
return p; 

The parameters are named between the parentheses, and their types are 
declared before the opening left brace; undeclared parameters are taken as int. 
(The body of the function is the same as before.) 

The declaration of power at the beginning of the program would have 
looked like this: 



SECTION 1.8 ARGUMENTS-CALL BY VALUE 27 

int power(); 

No parameter list was permitted, so the compiler could not readily check that 
power was being called correctly. Indeed, since by default power would have 
been assumed to return an int, the entire declaration might well have been 
omitted. 

The new syntax of function prototypes makes it much easier for a compiler 
to detect errors in the number of arguments or their types. The old style of 
declaration and definition still works in ANSI C, at least for a transition period, 
but we strongly recommend that you use the new form when you have a com-
piler that supports it. 

Exercise 1-15. Rewrite the temperature conversion program of Section 1.2 to 
use a function for conversion. D 

1.8 Arguments-Call by Value 
One aspect of C functions may be unfamiliar to programmers who are used 

to some other languages, particularly Fortran. In C, all function arguments are 
passed "by value." This means that the called function is given the values of its 
arguments in temporary variables rather than the originals. This leads to some 
different properties than are seen with "call by reference" languages like For-
tran or with var parameters in Pascal, in which the called routine has access to 
the original argument, not a local copy. 

The main distinction is that in C the called function cannot directly alter a 
variable in the calling function; it can only alter its private, temporary copy. 

Call by value is an asset, however, not a liability. It usually leads to more 
compact programs with fewer extraneous variables, because parameters can be 
treated as conveniently initialized local variables in the called routine. For 
example, here is a version of power that makes use of this property. 

I• power: raise base to n-th power; n>=O; version 2 •I 
int power(int base, int n) 
{ 

} 

int p; 

for (p = 1; n > 0; --n) 
p = p * base; 

return p; 

The parameter n is used as a temporary variable, and is counted down (a for 
loop that runs backwards) until it becomes zero; there is no longer a need for 
the variable i. Whatever is done to n inside power has no effect on the argu-
ment that power was called with. 

When necessary, it is possible to arrange for a function to modify a variable 



28 A TUTORIAL INTRODUCTION CHAPTER I 

in a calling routine. The caller must provide the address of the variable to be 
set (technically a pointer to the variable), and the called function must declare 
the parameter to be a pointer and access the variable indirectly through it. We 
will cover pointers in Chapter 5. 

The story is different for arrays. When the name of an array is used as an 
argument, the value passed to the function is the location or address of the 
beginning of the array-there is no copying of array elements. By subscripting 
this value, the function can access and alter any element of the array. This is 
the topic of the next section. 

1.9 Character Arrays 
The most common type of array in C is the array of characters. To illus-

trate the use of character arrays and functions to manipulate them, let's write a 
program that reads a set of text lines and prints the longest. The outline is sim-
ple enough: 

while (there's another line) 
if (it's longer than the previous longest) 

save it 
save its length 

print longest line 

This outline makes it clear that the program divides naturally into pieces. One 
piece gets a new line, another tests it, another saves it, and the rest controls the 
process. 

Since things divide so nicely, it would be well to write them that way too. 
Accordingly, let us first write a separate function getline to fetch the next 
line of input. We will try to make the function useful in other contexts. At the 
minimum, getline has to return a signal about possible end of file; a more 
useful design would be to return the length of the line, or zero if end of file is 
encountered. Zerois an acceptable end-of-file return because it is never a valid 
line length. Every text line has at least one character; even a line containing 
only a newli'ne has length 1. 

When we find a line that is longer than the previous longest line, it must be 
saved somewhere. This suggests a second function, copy, to copy the new line 
to a safe place. 

Finally, we need a main program to control getline and copy. Here is 
the result. 



SECTION 1.9 CHARACTER ARRAYS 29 

#include <stdio.h> 
#define MAXLINE 1000 /* maximum input line size */ 

int getline(char line[], int maxline); 
void copy(char to[], char from[]); 

/* print longest input line */ 
main() 
{ 

int len; 
int max; 

/* current line length */ 
/* maximum length seen so 

char line[MAXLINE]; 
char longest[MAXLINE]; 

/* current input line */ 
/* longest line saved here */ 

} 

max = 0; 
while ( (len = getline (line, MAXLINE) ) > 0) 

if ( len > max) { 
max = len; 
copy(longest, line); 

} 
if (max > 0) /* there was a line */ 

printf ( ""s" , longest) ; 
return 0; 

/* getline: read a line into s, return length */ 
int getline(char s[], int lim) 
{ 

} 

int c, i; 

for (i=O; i<lim-1 && (c=getchar())I=EOF && cl='\n'; ++i) 
s[i] = c; 

if (c == '\n') { 
s[i] = c; 
++i; 

} 
s(i] = '\0'; 
return i; 

/*copy: copy 'from' into 'to'; assume to is big enough*/ 
void copy(char to[], char from[]) 
{ 

} 

int i; 

i = 0; 
while ( (to[i] = from(i]) I= '\0') 

++ij 



30 A TUTORIAL INTRODUCTION CHAPTER I 

The functions getline and copy are declared at the beginning of the pro-
gram, which we assume is contained in one file. 

main and getline communicate through a pair of arguments and a 
returned value. In getline, the arguments are declared by the line 

int getline(char s[], int lim) 

which specifies that the first argument, s, is an array, and the second, lim, is 
an integer. The purpose of supplying the size of an array in a declaration is to 
set aside storage. The length of the array s is not necessary in getline since 
its size is set in main. getline uses return to send a value back to the 
caller, just as the function power did. This line also declares that getline 
returns an int; since int is the default return type, it could be omitted. 

Some funCtions return a useful value; others, like copy, are used only for 
their effect and return no value. The return type of copy is void, which states 
explicitly that no value is returned. 

getline puts the character '\0' (the null character, whose value is zero) 
at the end of the array it is creating, to mark the end of the string of characters. 
This convention is also used by the C language: when a string constant like 

"hello\n" 

appears in a C program, it is stored as an array of characters containing the 
characters of the string and terminated with a '\0' to mark the end. 

I h I e I 1 I 1 I o I \n I 'o I 
The %s format specification in print£ expects the corresponding argument to 
be a string represented in this form. copy also relies on the fact that its input 
argument is terminated by '\0 ', and it copies this character into the output 
argument. (All of this implies that '\0' is not a part of normal text.) 

It is worth mentioning in passing that even a program as small as this one 
presents some sticky design problems. For example, what should main do if it 
encounters a line which is bigger than its limit? getline works safely, in that 
it stops collecting when the array is full, even if no newline has been seen. By 
testing the length and the last character returned, main can determine whether 
the line was too long, and then cope as it wishes. In the interests of brevity, we 
have ignored the issue. 

There is no way for a user of getline to know in advance how long an 
input line might be, so getline checks for overflow. On the other hand, the 
user of copy already knows (or can find out) how big the strings are, so we 
have chosen not to add error checking to it. 

Exercise 1-16. Revise the main routine of the longest-line program so it will 
correctly print the length of arbitrarily long input lines, and as much as possible 
of the text. D 



SECTION 1.10 EXTERNAL VARIABLES AND SCOPE 31 

Exercise 1-17. Write a program to print all input lines that are longer than 80 
characters. 0 

Exercise 1-18. Write a program to remove trailing blanks and tabs from each 
line of input, and to delete entirely blank lines. o 

Exercise 1-19. Write a function reverse ( s} that reverses the character 
string s. Use it to write a program that reverses its input a line at a time. 0 

1.10 External Variables and Scope 
The variables in main, such as line, longest, etc., are private or local to 

main. Because they are declared within main, no other function can have 
direct access to them. The same is true of the variables in other functions; for 
example, the variable i in getline is unrelated to the i in copy. Each local 
variable in a function comes into existence only when the function is called, and 
disappears when the function is exited. This is why such variables are usually 
known as automatic variables, following terminology in other languages. We 
will use the term automatic henceforth to refer to these local variables. 
(Chapter 4 discusses the static storage class, in which local variables do 
retain their values between calls.) 

Because automatic variables come and go with function invocation, they do 
not retain their values from one call to the next, and must be explicitly set upon 
each entry. If they are not set, they will contain garbage. 

As an alternative to automatic variables, it is possible to define variables that 
are external to all functions, that is, variables that can be accessed by name by 
any function. (This mechanism is rather like Fortran COMMON or Pascal vari-
ables declared in the outermost block.) Because external variables are globally 
accessible, they can be used instead of argument lists to communicate data 
between functions. Furthermore, because external variables remain in existence 
permanently, rather than appearing and disappearing as functions are called and 
exited, they retain their values even after the functions that set them have 
returned. 

An external variable must be defined, exactly once, outside of any function; 
this sets aside storage for it. The variable must also be declared in each func-
tion that wants to access it; this states the type of the variable. The declaration 
may be an explicit extern statement or may be implicit from context. To 
make the discussion concrete, let us rewrite the longest-line program with line, 
longest, and max as external variables. This requires changing the calls, 
declarations, and bodies of all three functions. 



32 A TUTORIAL INTRODUCTION CHAPTER I 

#include <stdio.h> 

#define MAXLINE 1000 /* maximum input line size */ 

int max; /* maximum length seen so far */ 
/* current input line */ char line[MAXLINE]; 

char longest[MAXLINE]; I* longest line saved here */ 

int getline(void); 
void copy(void); 

/* print longest input line; specialized version */ 
main() 
{ 

} 

int len; 
extern int max; 
extern char longest[]; 

max = 0; 
while ((len= getline()) > 0) 

if (len > max) { 
max = len; 
copy(); 

} 
if (max > 0) /* there was a line */ 

printf ( "%s", longest); 
return 0; 

/* getline: specialized version */ 
int getline(void) 
{ 

} 

int c, i; 
extern char line[]; 

for (i = 0; i < MAXLINE-1 
&& (c=getchar()) I= EOF && c I= '\n'; ++i) 

line[i] = c; 
if ( c == '\n') { 

line[i] = c; 
++i; 

} 
line[i] = '\0'; 
return i; 



SECTION 1.10 EXTERNAL VARIABLES AND SCOPE 33 

/* copy: specialized version */ 
void copy(void) 
{ 

} 

int i; 
extern char line[], longest[]; 

i = 0; 
while ( (longest[i] = line[i]) I= ''0') 

++i; 

The external variables in main, getline, and copy are defined by the 
first lines of the example above, which state their type and cause storage to be 
allocated for them. Syntactically, external definitions are just like definitions of 
local variables, but since they occur outside of functions, the variables are exter-
nal. Before a function can use an external variable, the name of the variable 
must be made known to the function. One way to do this is to write an 
extern declaration in the function; the declaration is the same as before except 
for the added keyword extern. 

In certain circumstances, the extern declaration can be omitted. If the 
definition of an external variable occurs in the source file before its use in a par-
ticular function, then there is no need for an extern declaration in the func-
tion. The extern declarations in main, getline and copy are thus redun-
dant. In fact, common practice is to place definitions of all external variables at 
the beginning of the source file, and then omit all extern declarations. 

If the program is in several source files, and a variable is defined in file/ 
and used in file2 and file3, then extern declarations are needed in file2 and 
file3 to connect the occurrences of the variable. The usual practice is to collect 
extern declarations of variables and functions in a separate file, historically 
called a header, that is included by #include at the front of each source file. 
The suffix . h is conventional for header names. The functions of the standard 
library, for example, are declared in headers like <stdio. h>. This topic is 
discussed at length in Chapter 4, and the library itself in Chapter 7 and Appen-
dix B. 

Since the specialized versions of getline and copy have no arguments, 
logic would suggest that their prototypes at the beginning of the file should be 
getline ( ) and copy( ) . But for compatibility with older C programs the 
standard takes an empty list as an old-style declaration, and turns off all argu-
ment list checking; the word void must be used for an explicitly empty list. 
We will discuss this further in Chapter 4. 

You should note that we are using the words definition and declaration care-
fully when we refer to external variables in this section. "Definition" refers to 
the place where the variable is created or assigned storage; "declaration" refers 
to places where the nature of the variable is stated but no storage is allocated. 

By the way, there is a tendency to make everything in sight an extern vari-
able because it appears to simplify communications-argument lists are short 



34 A TUTORIAL INTRODUCTION CHAPTER 1 

and variables are always there when you want them. But external variables are 
always there even when you don't want them. Relying too heavily on external 
variables is fraught with peril since it leads to programs whose data connections 
are not at all obvious-variables can be changed in unexpected and even inad-
vertent ways, and the program is hard to modify. The second version of the 
longest-line program is inferior to the first, partly for these reasons, and partly 
because it destroys the generality of two useful functions by wiring into them 
the names of the variables they manipulate. 

At this point we have covered what might be called the conventional core of 
C. With this handful of building blocks, it's possible to write useful programs 
of considerable size, and it would probably be a good idea if you paused long 
enough to do so. These exercises suggest programs of somewhat greater com-
plexity than the ones earlier in this chapter. 

Exercise 1-20. Write a program detab that replaces tabs in the input with the 
proper number of blanks to space to the next tab stop. Assume a fixed set of 
tab stops, say every n columns. Should n be a variable or a symbolic parame-
ter? D 

Exercise 1-21. Write a program entab that replaces strings of blanks by the 
minimum number of tabs and blanks to achieve the same spacing. Use the 
same tab stops as for detab. When either a tab or a single blank would suffice 
to reach a tab stop, which should be given preference? D 

Exercise 1-22. Write a program to "fold" long input lines into two or more 
shorter lines after the last non-blank character that occurs before the n-th 
column of input. Make sure your program does something intelligent with very 
long lines, and if there are no blanks or tabs before the specified column. D 

Exercise 1-23. Write a program to remove all comments from a C program. 
Don't forget to handle quoted strings and character constants properly. C com-
ments do not nest. D 

Exercise 1-24. Write a program to check a C program for rudimentary syntax 
errors like unbalanced parentheses, brackets and braces. Don't forget about 
quotes, both single and double, escape sequences, and comments. (This pro-
gram is hard if you do it in full generality.) D 



cHAPTER 2: Types, Operators, and Expressions 

Variables and constants are the basic data objects manipulated in a program. 
Declarations list the variables to be used, and state what type they have and 
perhaps what their initial values are. Operators specify what is to be done to 
them. Expressions combine variables and constants to produce new values. The 
type of an object determines the set of values it can have and what operations 
can be performed on it. These building blocks are the topics of this chapter. 

The ANSI standard has made many small changes and additions to basic 
types and expressions. There are now signed and unsigned forms of all 
integer types, and notations for unsigned constants and hexadecimal character 
constants. Floating-point operations may be done in single precision; there is 
also a long double type for extended precision. String constants may be con-
catenated at compile time. Enumerations have become part of the language, 
formalizing a feature of long standing. Objects may be declared const, which 
prevents them from being changed. The rules for automatic coercions among 
arithmetic types have been augmented to handle the richer set of types. 

2.1 Variable Names 
Although we didn't say so in Chapter 1, there are some restrictions on the 

names of variables and symbolic constants. Names are rnade up of letters and 
digits; the first character must be a letter. The underscore "-" counts as a 
letter; it is sometimes useful for improving the readability of long variable 
names. Don't begin variable names with underscore, however, since library rou-
tines often use such names. Upper case and lower case letters are distinct, so x 
and X are two different names. Traditional C practice is to use lower case for 
variable names, and all upper case for symbolic constants. 

At least the first 31 characters of an internal name are significant. For 
function names and external variables, the number may be less than 31, because 
external names may be used by assemblers and loaders over which the language 
has no control. For external names, the standard guarantees uniqueness only 
for 6 characters and a single case. Keywords like if, else, int, float, etc., 

35 



36 TYPES, OPERATORS AND EXPRESSIONS CHAPTER 2 

are reserved: you can't use them as variable names. They must be in lower 
case. 

It's wise to choose variable names that are related to the purpose of the vari-
able, and that are unlikely to get mixed up typographically. We tend to use 
short· names for local variables, especially loop indices, and longer names for 
external variables. 

2.2 Data Types and Sizes 
There are only a few basic data types in C: 

char a single byte, capable of holding one character 
in the local character set. 

int an integer, typically reflecting the natural size 
of integers on the host machine. 

float single-precision floating point. 
double double-precision floating point. 

In addition, there are a number of qualifiers that can be applied to these 
basic types. short and long apply to integers: 

short int sh; 
long int counter; 

The word int can be omitted in such declarations, and typically is. 
The intent is that short and long should provide different lengths of 

integers where practical; int will normally be the natural size for a particular 
machine. short is often 16 bits, long 32 bits, and int either 16 or 32 bits. 
Each compiler is free to choose appropriate sizes for its own hardware, subject 
only to the restriction that shorts and ints are at least 16 bits, longs are at 
least 32 bits, and short is no longer than int, which is no longer than long. 

The qualifier signed or unsigned may be applied to char or any integer. 
unsigned numbers are always positive or zero, and obey the laws of arithmetic 
modulo 2", where n is the number of bits in the type. So, for instance, if chars 
are 8 bits, unsigned char variables have values between 0 and 255, while 
signed chars have values between -128 and 127 (in a two's complement 
machine). Whether plain chars are signed or unsigned is machine-dependent, 
but printable characters are always positive. 

The type long double specifies extended-precision floating point. As with 
integers, the sizes of floating-point objects are implementation-defined; float, 
double and long double could represent one, two or three distinct sizes. 

The standard headers <limits. h> and <float. h> contain symbolic con-
stants for all of these sizes, along with other properties of the machine and com-
piler. These are discussed in Appendix B. 

Exercise 2-1. Write a program to determine the ranges of char, short, int, 



SECTION 2.3 CONSTANTS 37 

and long variables, both signed and unsigned, by printing appropriate 
values from standard headers and by direct computation. Harder if you com-
pute them: determine the ranges of the various floating-point types. 0 

2.3 Constants 
An integer constant like 1234 is an int. A long constant is written with a 

terminal 1 (ell) or L, as in 123456789L; an integer too big to fit into an int 
will also be taken as a long. Unsigned constants are written with a terminal u 
or U, and the suffix ul or UL indicates unsigned long. 

Floating-point constants contain a decimal point ( 12 3 . 4) or an exponent 
( 1e-2) or both; their type is double, unless suffixed. The suffixes for F indi-
cate a float constant; 1 or L indicate a long double. 

The value of an integer can be specified in octal or hexadecimal instead of 
decimal. A leading 0 (zero) on an integer constant means octal; a leading Ox 
or OX means hexadecimal. For example, decimal 31 can be written as 0 3 7 in 
octal and Ox 1 f or OX 1 F in hex. Octal and hexadecimal constants may also be 
followed by L to make them long and U to make them unsigned: OXFUL is 
an unsigned long constant with value 15 decimal. 

A character constant is an integer, written as one character within single 
quotes, such as 'x'. The value of a character constant is the numeric value of 
the character in the machine's character set. For example, in the ASCII charac-
ter set the character constant '0' has the value 48, which is unrelated to the 
numeric value 0. If we write '0' instead of a numeric value like 48 that 
depends on character set, the program is independent of the particular value and 
easier to read. Character constants participate in numeric operations just as 
any other integers, although they are most often used in comparisons with other 
characters. 

Certain characters can be represented in character and string constants by 
escape sequences like \n (newline): these sequences look like two characters, 
but represent only one. In addition, an arbitrary byte-sized bit pattern can be 
specified by 

'\ooo' 

where ooo is one to three octal digits (0 ... 7) or by 

'\x.hh' 

where hh is one or more hexadecimal digits (0 ... 9, a ... f, A. .. F). So we might 
write 

#define VTAB '\013' 
#define BELL '\007' 

or, in hexadecimal, 

/* ASCII vertical tab */ 
/* ASCII bell character */ 



38 TYPES, OPERATORS AND EXPRESSIONS 

#define VTAB '\xb' 
#define BELL '\x7' 

/* ASCII vertical tab */ 
I* ASCII bell character */ 

The complete set of escape sequences is 
\a alert (bell) character \\ backslash 
\b backspace \? question mark 
\f formfeed \' single quote 
\n newline \" double quote 
\r carriage return \ooo octal number 

CHAPTER 2 

\t horizontal tab \xhh hexadecimal number 
\v vertical tab 

The character constant '\.0' represents the character with value zero, the 
null character. '\.0' is often written instead of 0 to emphasize the character 
nature of some expression, but the numeric value is just 0. 

A constant expression is an expression that involves only constants. Such 
expressions may be evaluated during compilation rather than run-time, and 
accordingly may be used in any place that a constant can occur, as in 

#define MAXLINE 1000 
char line[MAXLINE+1]; 

or 
#define LEAP 1 /* in leap years */ 
int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31]; 

A string constant, or string literal, is a sequence of zero or more characters 
surrounded by double quotes, as in 

"I am a string" 

or 

"" /* the empty string */ 

The quotes are not part of the string, but serve only to delimit it. The same 
escape sequences used in character constc:nts apply in strings; \." represents the 
double-quote character. String constants can be concatenated at compile time: 

"hello," "world" 

is equivalent to 
"hello, world" 

This is useful for splitting long strings across several source lines. 
Technically, a string constant is an array of characters. The internal 

representation of a string has a null character '\.0' at the end, so the physical 
storage required is one more than the number of characters written between the 
quotes. This representation means that there is no limit to how long a string 
can be, but programs must scan a string completely to determine its length. 
The standard library function strlen( s) returns the length of its character 



SECTION 2.3 CONSTANTS 39 

string argument s, excluding the terminal '\0 '. Here is our version: 

/* strlen: return length of s */ 
int strlen(char s[]) 
{ 

} 

int i; 

i = 0; 
while (s[i] I= '\0') 

++i; 
return i; 

strlen and other string functions are declared in the standard header 
<string. h>. 

Be careful to distinguish between a character constant and a string that con-
tains a single character: 'x' is not the same as 11 x 11 • The former is an integer, 
used to produce the numeric value of the letter x in the machine's character set. 
The latter is an array of characters that contains one character (the letter x) 
and a '\0'. 

There is one other kind of constant, the enumeration constant. An 
enumeration is a list of constant integer values, as in 

enum boolean { NO, YES }; 

The first name in an enwn has value 0, the next 1, and so on, unless explicit 
values are specified. If not all values are specified, unspecified values continue 
the progression from the last specified value, as in the second of these examples: 

enum escapes {BELL= '\a', BACKSPACE= '\b', TAB= '\t', 
NEWLINE= '\n', VTAB = '\v', RETURN= '\r' }; 

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, 
JUL, AUG, SEP, OCT, NOV, DEC }; 

I* FEB is 2, MAR is 3, etc. */ 

Names in different enumerations must be distinct. Values need not be distinct 
in the same enumeration. 

Enumerations provide a convenient way to associate constant values with 
names, an alternative to #define with the advantage that the values can be 
generated for you. Although variables of enwn types may be declared, com-
pilers need not check that what you store in such a variable is a valid value for 
the enumeration. Nevertheless, enumeration variables offer the chance of 
checking and so are often better than #defines. In addition, a debugger may 
be able to print values of enumeration variables in their symbolic form. 



40 TYPES, OPERATORS AND EXPRESSIONS CHAPTER 2 

2.4 Declarations 
All variables must be declared before use, although certain declarations can 

be made implicitly by context. A declaration specifies a type, and contains a 
list of one or more variables of that type, as in 

int lower, upper, step; 
char c, line[1000]; 

Variables can be distributed among declarations in any fashion; the lists above 
could equally well be written as 

int lower; 
int upper; 
int step; 
char c; 
char line[1000]; 

This latter form takes more space, but is convenient for adding a comment to 
each declaration or for subsequent modifications. 

A variable may also be initialized in its declaration. If the name is followed 
by an equals sign and an expression, the expression serves as an initializer, as in 

char 
int 
int 
float 

esc = '\ \'; 
i = 0; 
limit = MAXLINE+1; 
eps = 1.0e-5; 

If the variable in question is not automatic, the initialization is done once 
only, conceptually before the program starts executing, and the initializer must 
be a constant expression. An explicitly initialized automatic variable is initial-
ized each time the function or block it is in is entered; the initializer may be any 
expression. External and static variables are initialized to zero by default. 
Automatic variables for which there is no explicit initializer have undefined 
(i.e., garbage) values. 

The qualifier const can be applied to the declaration of any variable to 
specify that its value will not be changed. For an array, the const qualifier 
says that the elements will not be altered. 

const double e = 2.71828182845905; 
const char msq[] = "warning: "; 

The const declaration can also be used with array arguments, to indicate that 
the function does not change that array: 

int strlen(const char[)); 

The result is implementation-defined if an attempt is made to change a const. 



SECTION 2.6 RELATIONAL AND LOGICAL OPERATORS 41 

2.5 Arithmetic Operators 
The binary arithmetic operators are +, -, *• I, and the modulus operator %. 

Integer division truncates any fractional part. The expression 
x%y 

produces the remainder when x is divided by y, and thus is zero when y divides 
x exactly. For example, a year is a leap year if it is divisible by 4 but not by 
100, except that years divisible by 400 are leap years. Therefore 

if ((year% 4 == 0 && year% 100 I= 0) :: year% 400 == 0) 
printf ( 11 %d is a leap year\n 11 , year) ; 

else 
printf ( 11 %d is not a leap year\n 11 , year) ; 

The %operator cannot be applied to float or double. The direction of trun-
cation for I and the sign of the result for % are machine-dependent for negative 
operands, as is the action taken on overflow or underflow. 

The binary + and - operators have the same precedence, which is lower than 
the precedence of *• I, and %, which is in turn lower than unary + and -. 
Arithmetic operators associate left to right. 

Table 2-1 at the end of this chapter summarizes precedence and associativity 
for all operators. 

2.6 Relational and Logical Operators 
The relational operators are 

> >= < <= 

They all have the same precedence. Just below them in precedence are the 
equality operators: 

== I= 

Relational operators have lower precedence than arithmetic operators, so an 
expression like i < 1 im-1 is taken as i < ( 1 im- 1 ) , as would be expected. 

More interesting are the logical operators &.&. and I I. Expressions connected 
by &.&. or I I are evaluated left to right, and evaluation stops as soon as the truth 
or falsehood of the result is known. Most C programs rely on these properties. 
For example, here is a loop from the input function getline that we wrote in 
Chapter 1: 

for (i=O; i<lim-1 && (c=getchar()) I= '\n' && c I= EOF; ++i) 
s(i] = c; 

Before reading a new character it is necessary to check that there is room to 
store it in the array s, so the test i < lim-1 must be made first. Moreover, if 
this test fails, we must not go on and read another character. 



41 TYPES, OPERA TORS AND EXPRESSIONS CHAPTER 2 

Similarly, it would be unfortunate if c were tested against EOF before 
getchar is called; therefore the call and assignment must occur before the 
character in c is tested. 

The precedence of &.&. is higher than that of I I, and both are lower than 
relational and equality operators, so expressions like 

i<lim-1 && (c = qetchar()) I= '\n' && c I= EOF 

need no extra parentheses. But since the precedence of I = is higher than 
assignment, parentheses are needed in 

(c = qetchar()) I= '\n' 

to achieve the desired result of assignment to c and then comparison with • \n •. 
By definition, the numeric value of a relational or logical expression is 1 if 

the relation is true, and 0 if the relation is false. 
The unary negation operator I converts a non-zero operand into 0, and a 

zero operand into 1. A common use of I is in constructions like 
if (!valid) 

rather than 
if (valid == 0) 

It's hard to generalize about which form is better. Constructions like I valid 
read nicely ("if not valid"), but more complicated ones can be hard to under-
stand. 

Exercise 2-2. Write a loop equivalent to the for loop above without using &.&. 
or I I. D 

2. 7 Type Conversions 
When an operator has operands of different types, they are converted to a 

common type according to a small number of rules. In general, the only 
automatic conversions are those that convert a "narrower" operand into a 
"wider" one without losing information, such as converting an integer to floating 
point in an expression like f + i. Expressions that don't make sense, like 
using a float as a subscript, are disallowed. Expressions that might lose infor-
mation, like assigning a longer integer type to a shorter, or a floating-point type 
to an integer, may draw a warning, but they are not illegal. 

A char is just a small integer, so chars may be freely used in arithmetic 
expressions. This permits considerable flexibility in certain kinds of character 
transformations. One is exemplified by this naive implementation of the func-
tion atoi, which converts a string of digits into its numeric equivalent. 



SECTION 2.7 

/* atoi: convert s to integer */ 
int atoi(char s[]) 
{ 

int i, n; 

n = 0; 

TYPE CONVERSIONS 43 

for (i = 0; s[i] >= '0' && s[i] <= '9'; ++i) 
n = 10 * n + (s[i) - '0'); 

return n; 
} 

As we discussed in Chapter 1, the expression 
s[i] - '0' 

gives the numeric value of the character stored in s [ i ] , because the values of 
' 0 ', ' 1 ', etc., form a contiguous increasing sequence. 

Another example of char to int conversion is the function lower, which 
maps a single character to lower case for the ASCII character set. If the char-
acter is not an upper case letter, lower returns it unchanged. 

/* lower: convert c to lower case; ASCII only */ 
int lower(int c) 
{ 

} 

if (c >= 'A' && c <= 'Z') 
return c + 'a ' - 'A' ; 

else 
return c; 

This works for ASCII because corresponding upper case and lower case letters 
are a fixed distance apart as numeric values and each alphabet is contiguous-
there is nothing but letters between A and z. This latter observation is not true 
of the EBCDIC character set, however, so this code would convert more than 
just letters in EBCDIC. 

The standard header <ctype. h>, described in Appendix B, defines a family 
of functions that provide tests and conversions that are independent of character 
set. For example, the function to lower ( c ) returns the lower case value of c 
if c is upper case, so tolower is a portable replacement for the function 
lower shown above. Similarly, the test 

c >= '0' && c <= '9' 

can be replaced by 
isdigit(c) 

We will use the <ctype. h> functions from now on. 
There is one subtle point about the conversion of characters to integers. The 

language does not specify whether variables of type char are signed or 
unsigned quantities. When a char is converted to an int, can it ever produce 
a negative integer? The answer varies from machine to machine, reflecting 



44 TYPES, OPERATORS AND EXPRESSIONS CHAPTER 2 

differences in architecture. On some machines a char whose leftmost bit is 1 
will be converted to a negative integer ("sign extension"). On others, a char is 
promoted to an int by adding zeros at the left end, and thus is always positive. 

The definition of C guarantees that any character in the machine's standard 
printing character set will never be negative, so these characters will always be 
positive quantities in expressions. But arbitrary bit patterns stored in character 
variables may appear to be negative on some machines, yet positive on others. 
For portability, specify signed or unsigned if non-character data is to be 
stored in char variables. 

Relational expressions like i > j and logical expressions connected by &.&. 
and I I are defined to have value 1 if true, and 0 if false. Thus the assignment 

d = c >= '0' && c <= '9' 

sets d to 1 if c is a digit, and 0 if not. However, functions like isdigi t may 
return any non-zero value for true. In the test part of if, while, for, etc., 
"true" just means "non-zero," so this makes no difference. 

Implicit arithmetic conversions work . much as expected. In general, if an 
operator like + or * that takes two operands (a binary operator) has operands of 
different types, the "lower" type is promoted to the "higher" type before the 
operation proceeds. The result is of the higher type. Section 6 of Appendix A 
states the conversion rules precisely. If there are no unsigned operands, how-
ever, the following informal set of rules will suffice: 

If either operand is long double, convert the other to long double. 

Otherwise, if either operand is double, convert the other to double. 

Otherwise, if either operand is float, convert the other to float. 

Otherwise, convert char and short to int. 

Then, if either operand is long, convert the other to long. 

Notice that floats in an expression are not automatically converted to 
double; this is a change from the original definition. In general, mathematical 
functions like those in <math. h> will use double precision. The main reason 
for using float is to save storage in large arrays, or, less often, to save time on 
machines where double-precision arithmetic is particularly expensive. 

Conversion rules are more complicated when unsigned operands are 
involved. The problem is that comparisons between signed and unsigned values 
are machine-dependent,· because they depend on the sizes of the various integer 
types. For example, suppose that int is 16 bits and long is 32 bits. Then 
-1L < 1U, because 1U, which is an int, is promoted to a signed long. But 
-1L > 1UL, because -1L is promoted to unsigned long and thus appears to 
be a large positive number. 

Conversions take place across assignments; the value of the right side is con-
verted to the type of the left, which is the type of the result. 



SECTION 2.7 TYPE CONVERSIONS 45 

A character is converted to an integer, either by sign extension or not, as 
described above. 

Longer integers are converted to shorter ones or to chars by dropping the 
excess high-order bits. Thus in 

int i; 
char c; 

i = c; 
c = i; 

the value of c is unchanged. This is true whether or not sign extension is 
involved. Reversing the order of assignments might lose information, however. 

If x is float and i is int, then x = i and i = x both cause conversions; 
float to int causes truncation of any fractional part. When double is con-
verted to float, whether the value is rounded or truncated is implementation-
dependent. 

Since an argument of a function call is an expression, type conversions also 
take place when arguments are passed to functions. In the absence of a func-
tion prototype, char and short become int, and float becomes double. 
This is why we have declared function arguments to be int and double even 
when the function is called with char and float. 

Finally, explicit type conversions can be forced ("coerced") in any expres-
sion, with a l!nary operator called a cast. In the construction 

( type-name ) expression 

the expression is converted to the named type by the conversion rules above. 
The precise meaning of a cast is as if the expression were assigned to a variable 
of the specified type •. which is then used in place of the whole construction. For 
example, the library routine sqrt expects a double argument, and will pro-
duce nonsense if inadvertently handed something else. (sqrt is declared in 
<math. h>.) So if n is an integer, we can use 

sqrt((double) n) 

to convert the value of n to double before passing it to sqrt. Note that the 
cast produces the value of n in the proper type; n itself is not altered. The cast 
operator has the same high precedence as other unary operators, as summarized 
in the table at the end of this chapter. 

If arguments are declared by a function prototype, as they normally should 
be, the declaration causes automatic coercion of any arguments when the func-
tion is called. Thus, given a function prototype for sqrt: 

double sqrt(double); 

the call 
root2 = sqrt(2); 

coerces the integer 2 into the double value 2. 0 without any need for a cast. 



46 TYPES, OPERATORS AND EXPRESSIONS CHAPTER 2 

The standard library includes a portable implementation of a pseudo-random 
number generator and a function for initializing the seed; the former illustrates 
a cast: 

unsigned long int next = 1; 

/*rand: return pseudo-random integer on 0 .. 32767 */ 
int rand(void) 
{ 

next = next * 1103515245 + 
return (unsigned int)(next/65536) % 32768; 

} 

/* srand: set seed for rand() */ 
void srand(unsigned int seed) 
{ 

next = seed; 
} 

Exercise 2-3. Write the function htoi ( s), which converts a string of hexa-
decimal digits (including an optional Ox or ox) into its equivalent integer value. 
The allowable digits are 0 through 9, a through f, and A through F. D 

2.8 Increment and Decrement Operators 
C provides two unusual operators for incrementing and decrementing vari-

ables. The increment operator ++ adds 1 to its operand, while the decrement 
operator -- subtracts 1. We have frequently used ++ to increment variables, as 
in 

if ( c == '\n' ) 
++nl; 

The unusual aspect is that ++ and -- may be used either as prefix operators 
(before the variable, as in ++n), or postfix (after the variable: n++). In both 
cases, the effect is to increment n. But the expression ++n increments n before 
its value is used, while n++ increments n after its value has been used. This 
means that in a context where the value is being used, not just the effect, ++n 
and n++ are different. If n is 5, then 

x = n++; 

sets x to 5, but 
x = ++n; 

sets x to 6. In both cases, n becomes 6. The increment and decrement opera-
tors can only be applied to variables; an expression like ( i + j ) + + is illegal. 



SECTION 2.8 INCREMENT AND DECREMENT OPERATORS 47 

In a context where no value is wanted, just the incrementing effect, as in 

if (c == '\n') 
nl++; 

prefix and postfix are the same. But there are situations where one or the other 
is specifically called for. For instance, consider the function squeeze ( s, c), 
which removes all occurrences of the character c from the string s. 

/* squeeze: delete all c from s */ 
void squeeze(char s[], int c) 
{ 

} 

int i, j; 

for (i = j = 0; s[i] I= '\0'; i++) 
if (s[i] I= c) 

s[j++] = s[i]; 
s[j] = '\0'; 

Each time a non-e occurs, it is copied into the current j position, and only then 
is j incremented to be ready for the next character. This is exactly equivalent 
to 

if (s[i] I= c) { 
s[j] = s[i]; 
j++; 

} 

Another example of a similar construction comes from the getline func-
tion that we wrote in Chapter 1, where we can replace 

if (c == '\n') 
s[i] = c; 
++i; 

} 

by the more compact 

if (c == '\n') 
s[i++] = c; 

{ 

As a third example, consider the standard function strcat ( s, t), which 
concatenates the string t to the end of the string s. strcat assumes that 
there is enough space in s to hold the combination. As we have written it, 
strcat returns no value; the standard library version returns a pointer to the 
resulting string. 



48 TYPES, OPERATORS AND EXPRESSIONS CHAPTER 2 

I* strcat: concatenate t to end of s; s must be big enough */ 
void strcat(char s(], chart(]) 
{ 

int i, j; 

i = j = 0; 
while (s(i] I= '\0') /* find end of s */ 

i++; 
while ( (s[i++] = t[j++]) I= '\0') 

} 

As each character is copied from t to s, the postfix ++ is applied to both i and 
j to make sure that they are in position for the next pass through the loop. 

Exercise 2-4. Write an alternate version of squeeze ( s 1, s2) that deletes 
each character in s 1 that matches any character in the string s2. 0 

Exercise 2-5. Write the function any ( s 1 , s2), which returns the first location 
in the string s 1 where any character from the string s2 occurs, or -1 if s 1 
contains no characters from s2. (The standard library function strpbrk does 
the same job but returns a pointer to the location.) o 

2.9 Bitwise Operators 
C provides six operators for bit manipulation; these may only be applied to 

integral operands, that is, char, short, int, and long, whether signed or 
unsigned. 

<< 
>> 

bitwise AND 
bitwise inclusive OR 
bitwise exclusive OR 
left shift 
right shift 
one's complement (unary) 

The bitwise AND operator &. is often used to mask off some set of bits; for 
example, 

n = n &. 0177; 

sets to zero all but the low-order 7 bits of n. 
The bitwise OR operator I is used to turn bits on: 

x = x l SET_ON; ' 

sets to one in x the bits that are set to one in SET_ON. 
The bitwise exclusive OR operator " sets a one in each bit position where its 

operands have different bits, and zero where they are the same. 



SECTION 2.9 BITWISE OPERATORS 49 

One must distinguish the bitwise operators &. and from the logical opera-
tors &.&. and I I, which imply left-to-right evaluation of a truth value. For 
example, if xis 1 and y is 2, then x &. y is zero while x &.&. y is one. 

The shift operators < < and > > perform left and right shifts of their left 
operand by the number of bit positions given by the right operand, which must 
be positive. Thus x < < 2 shifts the value of x left by two positions, filling 
vacated bits with zero; this is equivalent to multiplication by 4. Right shifting 
an unsigned quantity always fills vacated bits with zero. Right shifting a 
signed quantity will fill with sign bits ("arithmetic shift") on some machines 
and with O-bits ("logical shift") on others. 

The unary operator - yields the one's complement of an integer; that is, it 
converts each 1-bit into a O-bit and vice versa. For example, 

X = X & -077 

sets the last six bits of x to zero. Note that x &. -077 is independent of word 
length, and is thus preferable to, for example, x &. 0177700, which assumes 
that x is a 16-bit quantity. The portable form involves no extra cost, since 
-077 is a constant expression that can be evaluated at compile time. 

As an illustration of some of the bit operators, consider the function 
getbi ts ( x, p, n) that returns the (right adjusted) n-bit field of x that begins 
at position p. We assume that bit position 0 is at the right end and that nand 
p are sensible positive values. For example, getbi ts ( x, 4, 3 ) returns the 
three bits in bit positions 4, 3 and 2, right adjusted. 

/* getbits: get n bits from position p */ 
unsigned getbits(unsigned x, int p, int n) 
{ 

return (x >> (p+1-n)) & -(-0 << n); 
} 

The expression x > > ( p+ 1-n ) moves the desired field to the right end of the 
word. -o is all 1-bits; shifting it left n bit positions with -O<<n places zeros in 
the rightmost n bits; complementing that with - makes a mask with ones in the 
rightmost n bits. 

Exercise 2-6. Write a function setbi ts ( x, p, n, y) that returns x with the n 
bits that begin at position p set to the rightmost n bits of y, leaving the other 
bits unchanged. 0 

Exercise 2-7. Write a function invert(x,p,n) that returns x with then bits 
that begin at position p inverted (i.e., 1 changed into 0 and vice versa), leaving 
the others unchanged. o 

Exercise 2-8. Write a function rightrot ( x, n) that returns the value of the 
integer x rotated to the right by n bit positions. 0 



SO TYPES, OPERATORS AND EXPRESSIONS CHAPTER 2 

2. 10 Assignment Operators and Expressions 
Expressions such as 

i = i + 2 

in which the variable on the left hand side is repeated immediately on the right, 
can be written in the compressed form 

i += 2 

The operator += is called an assignment operator. 
Most binary operators (operators like + that have a left and right operand) 

have a corresponding assignment operator op =, where op is one of 
+ * I " << >> 

If expr 1 and expr 2 are expressions, then 

is equivalent to 
expr 1 = (expr 1 ) op (expr 2 ) 

except that expr 1 is computed only once. Notice the parentheses around expr2 : 

X *= y + 1 

means 
X= X* (y + 1) 

rather than 

As an example, the function bi tcount counts the number of 1-bits in its 
integer argument. 

/* bitcount: count 1 bits in x */ 
int bitcount(unsigned x) 
{ 

} 

int b; 

for (b = 0; x I= 0; x >>= 1) 
if (X & 01) 

b++; 
return b; 

Declaring the argument x to be unsigned ensures that when it is right-shifted, 
vacated bits will be filled with zeros, not sign bits, regardless of the machine the 
program is run on. 

Quite apart from conciseness, assignment operators have the advantage that 
they correspond better to the way people think. We say "add 2 to i" or 



SECTION 2.11 CONDITIONAL EXPRESSIONS 51 

"increment i by 2," not "take i, add 2, then put the result back in i." Thus 
the expression i += 2 is preferable to i = i+2. In addition, for a complicated 
expression like 

yyval[yypv[p3+p4] + yypv[p1+p2]] += 2 

the assignment operator makes the code easier to understand, since the reader 
doesn't have to check painstakingly that two long expressions are indeed the 
same, or to wonder why they're not. And an assignment operator may even 
help a compiler to produce efficient code. 

We have already seen that the assignment statement has a value and can 
occur in expressions; the most common example is 

while ((c = getchar()) I= EOF) 

The other assignment operators (+=, -=, etc.) can also occur in expressions, 
although this is less frequent. 

In all such expressions, the type of an assignment expression is the type of its 
left operand, and the value is the value after the assignment. 

Exercise 2-9. In a two's complement number system, x &.= ( x-1 ) deletes the 
rightmost 1-bit in x. Explain why. Use this observation to write a faster ver-
sion of bi tcount. 0 

2. 11 Conditional Expressions 
The statements 

if (a > b) 
z = a; 

else 
z = b; 

compute in z the maximum of a and b. The conditional expression, written 
with the ternary operator "? : ", provides an alternate way to write this and 
similar constructions. In the expression 

expr 1 ? expr2 : expr3 

the expression expr 1 is evaluated first. If it is non-zero (true), then the expres-
sion expr2 is evaluated, and that is the value of the conditional expression. 
Otherwise expr3 is evaluated, and that is the value. Only one of expr 2 and 
expr 3 is evaluated. Thus to set z to the maximum of a and b, 

z = (a > b) ? a : b; /* z = max(a, b) */ 

It should be noted that the conditional expression is indeed an expression, 
and it can be used wherever any other expression can be. If expr2 and expr 3 



Sl TYPES, OPERA TORS AND EXPRESSIONS CHAPTER 2 

are of different types, the type of the result is determined by the conversion 
rules discussed earlier in this chapter. For example, iff is a float and n is an 
int, then the expression 

(n > 0) ? f : n 

is of type float regardless of whether n is positive. 
Parentheses are not necessary around the first expression of a conditional 

expression, since the precedence of ? : is very low, just above assignment. They 
are advisable anyway, however, since they make the condition part of the 
expression easier to see. 

The conditional expression often leads to succinct code. For example, this 
loop prints n elements of an array, 10 per line, with each column separated by 
one blank, and with each line (including the last) terminated by a newline. 

for (i = 0; i < n; i++) 
printf( 11 %6d%c 11 , a[i], (i%10==9 II i==n-1)? '\n': ''); 

A newline is printed after every tenth element, and after the n-th. All other 
elements are followed by one blank. This might look tricky, but it's more com-
pact than the equivalent if-else. Another good example is 

printf( 11 You have %d item%s.\n 11 , n, n==1 ? 1111 : 11 s 11 ); 

Exercise 2-10. Rewrite the function lower, which converts upper case letters 
to lower case, with a conditional expression instead of if-else. D 

2.12 Precedence and Order of Evaluation 
Table 2-1 summarizes the rules for precedence and associativity of all opera-

tors, including those that we have not yet discussed. Operators on the same line 
have the same precedence; rows are in order of decreasing precedence, so, for 
example, *• I, and %all have the same precedence, which is higher than that of 
binary + and -. The "operator" ( ) refers to function call. The operators -> 
and . are used to access members of structures; they will be covered in Chapter 
6, along with sizeof (size of an object). Chapter 5 discusses * (indirection 
through a pointer) and &. (address of an object), and Chapter 3 discusses the 
comma operator. 

Note that the precedence of the bitwise operators&., ",and I falls below == 
and I =. This implies that bit-testing expressions like 

if ( ( x & MASK) == 0) ... 

must be fully parenthesized to give proper results. 
C, like most languages, does not specify the order in which the operands of 

an operator are evaluated. (The exceptions are &.&., I I, ? :, and ', '.) For 
example, in a statement like 



SECTION 2.12 PRECEDENCE AND ORDER OF EVALUATION 53 

TABLE 2-1. PRECEDENCE AND ASSOCIATIVITY OF OPERATORS 

OPERATORS ASSOCIATIVITY 

( ) [ ] -> left to right - ++ -- + - * & (type) sizeof right to left 

* I " left to right 
+ left to right 
<< >> left to right 
< <= > >= left to right 
== I= left to right 
& left to right 
" left to right 

left to right 
&& left to right 
I I left to right I I 

? : right to left 
= += -= *= I= "= &= " = := <<= >>= right to left 

left to right 

Unary +, -,and *have higher precedence than the binary forms. 

X = f() + g(); 

f may be evaluated before q or vice versa; thus if either f or q alters a variable 
on which the other depends, x can depend on the order of evaluation. Inter-
mediate results can be stored in temporary variables to ensure a particular 
sequence. 

Similarly, the order in which function arguments are evaluated is not speci-
fied, so the statement 

printf(''%d %d\n", ++n, power(2, n)); 

can produce different results with different compilers, depending on whether n 
is incremented before power is called. The solution, of course, is to write 

++n; 
printf("%d %d\n", n, power(2, n)); 

Function calls, nested assignment statements, and increment and decrement 
operators cause "side effects" -some variable is changed as a by-product of the 
evaluation of an expression. In any expression involving side effects, there can 
be subtle dependencies on the order in which variables taking part in the expres-
sion are updated. One unhappy situation is typified by the statement 

a[i] = i++; 

The question is whether the subscript is the old value of i or the new. 



54 TYPES, OPERATORS AND EXPRESSIONS CHAPTER 2 

Compilers can interpret this in different ways, and generate different answers 
depending on their interpretation. The standard intentionally leaves most such 
matters unspecified. When side effects (assignment to variables) take place 
within an expression is left to the discretion of the compiler, since the best order 
depends strongly on machine architecture. (The standard does specify that all 
side effects on arguments take effect before a function is called, but that would 
not help in the call to print£ above.) 

The moral is that writing code that depends on order of evaluation is a bad 
programming practice in any language. Naturally, it is necessary to know what 
things to avoid, but if you don't know how they are done on various machines, 
you won't be tempted to take advantage of a particular implementation. 



cHAPTER 3: Control Flow 

The control-flow statements of a language specify the order in which compu-
tations are performed. We have already met the most common control-flow 
constructions in earlier examples; here we will complete the set, and be more 
precise about the ones discussed before. 

3. 1 Statements and Blocks 
An expression such as x = 0 or i++ or print£( ... ) becomes a statement 

when it is followed by a semicolon, as in 
X = 0; 
i++; 
print£( ... ); 

In C, the semicolon is a statement terminator, rather than a separator as it is in 
languages like Pascal. 

Braces { and } are used to group declarations and statements together into a 
compound statement, or block, so that they are syntactically equivalent to a 
single statement. The braces that surround the statements of a function are one 
obvious example; braces around multiple statements after an if, else, while, 
or for are another. (Variables can be declared inside any block; we will talk 
about this in Chapter 4.) There is no semicolon after the right brace that ends 
a block. 

3.2 If-Else 
The if-else statement is used to express decisions. Formally, the syntax is 

if (expression) 
statement 1 

else 
statement 2 

55 



56 CONTROL FLOW CHAPTER 3 

where the else part is optional. The expression is evaluated; if it is true (that 
is, if. expression has a non-zero value), statement 1 is executed. If it is false 
(expression is zero) and if there is an else part, statement 2 is executed 
instead. 

Since an if simply tests the numeric value of an expression, certain coding 
shortcuts are possible. The most obvious is writing 

if (expression) 

instead of 

if (expression I= 0) 

Sometimes this is natural and clear; at other times it can be cryptic. 
Because the else part of an if-else is optional, there is an ambiguity 

when an else is omitted from a nested if sequence. This is resolved by asso-
ciating the else with the closest previous else-less if. For example, in 

if (n > 0) 
if (a > b) 

z = a; 
else 

z = b; 

the else goes with the inner if, as we have shown by indentation. If that isn't 
what you want, braces must be used to force the proper association: 

if (n > 0) { 
if (a > b) 

z = a; 
} 
else 

z = b; 

The ambiguity is especially pernicious in situations like this: 

if (n >= 0) 
for (i = 0; i < n; i++) 

if ( s [ i 1 > 0 ) { 
print£ ( " ... " ) ; 
return i; 

} 

printf("error -- n is negative\n"); 

The indentation shows unequivocally what you want, but the compiler doesn't 
get the message, and associates the else with the inner if. This kind of bug 
can be hard to find; it's a good idea to use braces when there are nested ifs. 

By the way, notice that there is a semicolon after z = a in 



SECTION 3.3 ELSE-IF 57 

if (a > b) 
z = a· • 

else 
z = b; 

This is because grammatically, a statement follows the if, and an expression 
statement like "z = a;" is always terminated by a semicolon. 

3.3 Else-If 
The construction 

if (expression) 
statement 

else if (expression) 
statement 

else if (expression) 
statement 

else if (expression) 
statement 

else 
statement 

occurs so often that it is worth a brief separate discussion. This sequence of if 
statements is the most general way of writing a multi-way decision. The 
expressions are evaluated in order; if any expression is true, the statement asso-
ciated with it is executed, and this terminates the whole chain. As always, the 
code for each statement is either a single statement, or a group in braces. 

The last else part handles the "none of the above" or default case where 
none of the other conditions is satisfied. Sometimes there is no explicit action 
for the default; in that case the trailing 

else 
statement 

can be omitted, or it may be used for error checking to catch an "impossible" 
condition. 

To illustrate a three-way decision, here is a binary search function that 
decides if a particular value x occurs in the sorted array v. The elements of v 
must be in increasing order. The function returns the position (a number 
between 0 and n-1) if x occurs in v, and -1 if not. 

Binary search first compares the input value x to the middle element of the 
array v. If x is less than the middle value, searching focuses on the lower half 
of the table, otherwise on the upper half. In either case, the next step is to com-
pare x to the middle element of the selected half. This process of dividing the 
range in two continues until the value is found or the range is empty. 



58 CONTROL FLOW CHAPTER 3 

/* binsearch: find x in v[O] <= v[1] <= ••• <= v[n-1] */ 
int binsearch(int x, int v[], int n) 
{ 

} 

int low, high, mid; 

low = 0; 
high = n - 1; 
while (low <= high) { 

mid = (low+high) I 2; 
if (x < v[mid]) 

} 

high = mid - 1 ; 
else if (x > v[mid]) 

low = mid + 1; 
else /* found match */ 

return mid; 

return -1; /*no match*/ 

The fundamental decision is whether xis less than, greater than, or equal to the 
middle element v[mid] at each step; this is a natural for else-if. 

Exercise 3-1. Our binary search makes two tests inside the loop, when one 
would suffice (at the price of more tests outside). Write a version with only one 
test inside the loop and measure the difference in run-time. D 

3.4 Switch 
The switch statement is a multi-way decision that tests whether an expres-

sion matches one of a number of constant integer values, and branches accord-
ingly. 

switch (expression ) { 

} 

case const-expr: statements 
case const-expr: statements 
default: statements 

Each case is labeled by one or more integer-valued constants or constant expres-
sions. If a case matches the expression value, execution starts at that case. All 
case expressions must be different. The case labeled default is executed if 
none of the other cases are satisfied. A default is optional; if it isn't there 
and if none of the cases match, no action at all takes place. Cases and the 
default clause can occur in any order. 

In Chapter 1 we wrote a program to count the occurrences of each digit, 
white space, and all other characters, using a sequence of if ... else if ... 
else. Here is the same program with a switch: 



SECTION 3.4 

#include <stdio.h> 

main() /*count digits, white space, others*/ 
{ 

int c, i, nwhite, nother, ndigit[10]; 

nwhite = nother = 0; 
for (i = 0; i < 10; i++) 

ndigit[i) = 0; 
while ((c = getchar()) I= EOF) { 

switch (c) { 

SWITCH 59 

case '0': case '1': case '2': case '3': case '4': 
case '5': case '6': case '7': case '8': case '9': 

} 

} 

case 

ndigit[c-'0']++; 
break; 

, , 0 

case '\n': 
case '\t': 

nwhite++; 
break; 

default: 

} 

nother++; 
break; 

printf("digits ="); 
for (i = 0; i < 10; i++) 

printf(" "d", ndigit[i]); 
printf(", white space = %d, other = %d\n", 

nwhi te , nother ) ; 
return 0; 

The break statement causes an immediate exit from the switch. Because 
cases serve just as labels, after the code for one case is done, execution falls 
through to the next unless you take explicit action to escape. break and 
return are the most common ways to leave a switch. A break statement 
can also be used to force an immediate exit from while, for, and do loops, as 
will be discussed later in this chapter. 

Falling through cases is a mixed blessing. On the positive side, it allows 
several cases to be attached to a single action, as with the digits in this example. 
But it also implies that normally each case must end with a break to prevent 
falling through to the next. Falling through from one case to another is not 
robust, being prone to disintegration when the program is modified. With the 
exception of multiple labels for a single computation, fall-throughs should be 
used sparingly, and commented. 

As a matter of good form, put a break after the last case (the default 
here) even though it's logically unnecessary. Some day when another case gets 
added at the end, this bit of defensive programming will save you. 



60 CONTROL FLOW CHAPTER 3 

Exercise 3-2. Write a function escape ( s, t) that converts characters like 
newline and tab into visible escape sequences like \n and \ t as it copies the 
string t to s. Use a switch. Write a function for the other direction as well, 
converting escape sequences into the real characters. D 

3.5 Loops-While and For 
We have already encountered the while and for loops. In 

while (expression ) 
statement 

the expression is evaluated. If it is non-zero, statement is executed and expres-
sion is re-evaluated. This cycle continues until expression becomes zero, at 
which point execution resumes after statement. 

The for statement 
for (expr 1 ; expr2 ; expr 3 ) 

statement 

is equivalent to 
expr 1 ; 
while (expr 2 ) { 

statement 
expr 3 ; 

} 

except for the behavior of continue, which is described in Section 3.7. 
Grammatically, the three components of a for loop are expressions. Most 

commonly, expr 1 and expr3 are assignments or function calls and expr 2 is a 
relational expression. Any of the three parts can be omitted, although the semi-
colons must remain. If expr 1 or expr3 is omitted, it is simply dropped from the 
expansion. If the test, expr2, is not present, it is taken as permanently true, so 

for ( ; ; ) { 

} 

is an "infinite" loop, presumably to be broken by other means, such as a break 
or return. 

Whether to use while or for is largely a matter of personal preference. 
For example, in 

while ((c = getchar()) == 1 1 I I c == 1 \n 1 I I c == 1 \t 1 ) 

I• skip white space characters •I 

there is no initialization or re-initialization, so the while is most natural. 
The for is preferable when there is a simple initialization and increment, 

since it keeps the loop control statements close together and visible at the top of 



SECTION 3.5 

the loop. This is most obvious in 
for (i = 0; i < n; i++) 

LOOPS-WHILE AND FOR 61 

which is the c idiom for processing the first n elements of an array, the analog 
of the Fortran DO loop or the Pascal for. The analogy is not perfect, however, 
since the index and limit of a C for loop can be altered from within the loop, 
and the index variable i retains its value when the loop terminates for any rea-
son. Because the components of the for are arbitrary expressions, for loops 
are not restricted to arithmetic progressions. Nonetheless, it is bad style to 
force unrelated computations into the initialization and increment of a for, 
which are better reserved for loop control operations. 

As a larger example, here is another version of atoi for converting a string 
to its numeric equivalent. This one is slightly more general than the one in 
Chapter 2; it copes with optional leading white space and an optional + or -
sign. (Chapter 4 shows atof, which does the same conversion for floating-
point numbers.) 

The structure of the program reflects the form of the input: 
skip white space, if any 
get sign, if any 
get integer part and convert it 

Each step does its part, and leaves things in a clean state for the next. The 
whole process terminates on the first character that could not be part of a 
number. 

#include <ctype.h> 

/* atoi: convert s to integer; version 2 */ 
int atoi(char s[]) 
{ 

} 

int i, n, sign; 

for (i = 0; isspace(s[i]); i++) /* skip white space */ 

sign= (s[i] == '-') ? -1 : 1; 
if (s[i] == '+' I I s[i] == '-') /*skip sign*/ 

i++; 
for (n = 0; isdigit(s[i]); i++) 

n = 10 * n + (s[i] - '0'); 
return sign * n; 

The standard library provides a more elaborate function strtol for conversion 
of strings to long integers; see Section 5 of Appendix B. 

The advantages of keeping loop control centralized are even more obvious 
when there are several nested loops. The following function is a Shell sort for 
sorting an array of integers. The basic idea of this sorting algorithm, which was 



62 CONTROL FLOW CHAPTER 3 

invented in 1959 by D. L. Shell, is that in early stages, far•apart elements are 
compared, rather than adjacent ones as in simpler interchange sorts. This tends 
to eliminate large amounts of disorder quickly, so later stages have less work to 
do. The interval between compared elements is gradually decreased to one, at 
which point the sort effectively becomes an adjacent interchange method. 

I• shellsort: sort v[O] .•. v[n-1] into increasing order •I 
void shellsort(int v[], int n) 
{ 

} 

int gap, i, j, temp; 

for (gap = nl2; gap > 0; gap /= 2) 
for (i = gap; i < n; i++) 

for (j=i-gap; j>=O && v[j]>v[j+gap]; j-=gap) { 
temp= v[j]; 
v[j] = v[j+gap]; 
v[j+gap] = temp; 

} 

There are three nested loops. The outermost controls the gap between com-
pared elements, shrinking it from n/2 by a factor of two each pass until it 
becomes zero. The. middle loop steps along the elements. The innermost loop 
compares each pair of elements that is separated by gap and reverses any that 
are out of order. Since gap is eventually reduced to one, all elements are even-
tually ordered correctly. Notice how the generality of the for makes the outer 
loop fit the same form as the others, even though it is not an arithmetic progres-
sion. 

One final C operator is the comma " , ", which most often finds use in the 
for statement. A pair of expressions separated by a comma is evaluated left to 
right, and the type and value of the result are the type and value of the right 
operand. Thus in a for statement, it is possible to place multiple expressions in 
the various parts, for example to process two indices in parallel. This is illus-
trated in the function reverse ( s ) , which reverses the string s in place. 

#include <string.h> 

I• reverse: reverse string s in place •I 
void reverse(char s[]) 
{ 

} 

int c, i, j; 

for (i = 0, j = strlen(s)-1; i < j; i++, j--) { 
c = s[i]; 
s[i] = s[j]; 
s[j] = c; 

} 



SECTION 3.6 LOOPS-DO-WHILE 63 

The commas that separate function arguments, variables in declarations, etc., 
are not comma operators, and do not guarantee left to right evaluation. 

Comma operators should be used sparingly. The most suitable uses are for 
constructs strongly related to each other, as in the for loop in reverse, and in 
macros where a multistep computation has to be a single expression. A comma 
expression might also be appropriate for the exchange of elements in reverse, 
where the exchange can be thought of as a single operation: 

for (i = 0, j = strlen(s)-1; i < j; i++, j--) 
c = s[i], s[i] = s(j], s(j] = c; 

Exercise 3-3. Write a function expand ( s 1 , s2) that expands shorthand nota-
tions like a-z in the string s 1 into the equivalent complete list abc ... xyz in 
s2. Allow for letters of either case and digits, and be prepared to handle cases 
like a-b-c and a-z0-9 and -a-z. Arrange that a leading or trailing - is 
taken literally. D 

3.6 Loops-Do-while 
As we discussed in Chapter 1, the while and for loops test the termination 

condition at the top. By contrast, the third loop in C, the do-while, tests at 
the bottom after making each pass through the loop body; the body is always 
executed at least once. 

The syntax of the do is 

do 
statement 

while (expression); 

The statement is executed, then expression is evaluated. If it is true, statement 
is evaluated again, and so on. When the expression becomes false, the loop ter-
minates. Except for the sense of the test, do-while is equivalent to the Pascal 
repeat-until statement. 

Experience shows that do-while is much less used than while and for. 
Nonetheless, from time to time it is valuable, as in the following function i toa, 
which converts a number to a character string (the inverse of atoi). The job 
is slightly more complicated than might be thought at first, because the easy 
methods of generating the digits generate them in the wrong order. We have 
chosen to generate the string backwards, then reverse it. 



64 CONTROL FLOW 

I* itoa: convert n to characters in s */ 
void itoa(int n, chars[]) 
{ 

int i, sign; 

if ((sign= n) < 0) /*record sign*/ 
n = -n; /* make n positive */ 

i = 0; 

CHAPTER 3 

do { /* generate digits in reverse order */ 
s[i++] = n% 10 + •o•; I* get next digit*/ 

} while ((n I= 10) > 0); /*delete it*/ 
if (sign < 0) 

s[i++] = •-•; 
s[i] = '\0'; 

· reverse(s); 
} 

The do-while is necessary, or at least convenient, since at least one character 
must be installed in the array s, even if n is zero. We also used braces around 
the single statement that makes up the body of the do-while, even though 
they are unnecessary, so the hasty reader will not mistake the while part for 
the beginning of a while loop. 

Exercise 3-4. In a two's complement number representation, our version of 
i toa does not handle the largest negative number, that is, the value of n equal 
to -(2wordsizc-l). Explain why not. Modify it to print that value correctly, 
regardless of the machine on which it runs. 0 

Exercise 3-5. Write the function i tob ( n, s, b) that converts the integer n 
into a base b character representation in the string s. In particular, 
i tob ( n , s , 16 ) formats n as a hexadecimal integer in s. o 

Exercise 3-6. Write a version of i toa that accepts three arguments instead of 
two. The third argument is a minimum field width; the converted number must 
be padded with blanks on the left if necessary to make it wide enough. 0 

3. 7 Break and Continue 
It is sometimes convenient to be able to exit from a loop other than by test-

ing at the top or bottom. The break statement provides an early exit from 
for, while, and do, just as from switch. A break causes the innermost 
enclosing loop or switch to be exited immediately. 

The following function, trim, removes trailing blanks, tabs, and newlines 
from the end of a string, using a break to exit from a loop when the rightmost 
non-blank, non-tab, non-newline is found. 



SECTION 3.8 GOTO AND LABELS 65 

I* trim: remove trailing blanks, tabs, newlines */ 
int trim(char s[]) 
{ 

} 

int n; 

for (n = strlen(s)-1; n >= 0; n--) 
if (s[n] I= ' ' &.&. s[n] I= '\t' &.&. s[n] I= '\n') 

break; 
s[n+1] = '\0'; 
return n; 

strlen returns the length of the string. The for loop starts at the end and 
scans backwards looking for the first character that is not a blank or tab or 
newline. The loop is broken when one is found, or when n becomes negative 
(that is, when the entire string has been scanned). You should verify that this 
is correct behavior even when the string is empty or contains only white space 
characters. 

The continue statement is related to break, but less often used; it causes 
the next iteration of the enclosing for, while, or do loop to begin. In the 
while and do, this means that the test part is executed immediately; in the 
for, control passes to the increment step. The continue statement applies 
only to loops, not to switch. A continue inside a switch inside a loop 
causes the next loop iteration. 

As an example, this fragment processes only the non-negative elements in 
the array a; negative values are skipped. 

for (i = 0; i < n; i++) { 

} 

if (a[i] < 0) /* skip negative elements */ 
continue; 
/* do positive elements */ 

The continue statement is often used when the part of the loop that follows is 
complicated, so that reversing a test and indenting another level would nest the 
program too deeply. 

3.8 Goto and Labels 
C provides the infinitely-abusable goto statement, and labels to branch to. 

Formally, the goto is never necessary, and in practice it is almost always easy 
to write code without it. We have not used goto in this book. 

Nevertheless, there are a few situations where gotos may find a place. The 
most common is to abandon processing in some deeply nested structure, such as 
breaking out of two or more loops at once. The break statement cannot be 
used directly since it only exits from the innermost loop. Thus: 



66 CONTROL FLOW 

for ( ... ) 

error: 

for ( ... ) { 

} 

if (disaster) 
goto error; 

clean up the mess 

CHAPTER 3 

This organization is handy if the error-handling code is non-trivial, and if errors 
can occur in several places. 

A label has the same form as a variable name, and is followed by a colon. It 
can be attached to any statement in the same function as the goto. The scope 
of a label is the entire function. 

As another example, consider the problem of determining whether two 
arrays a and b have an element in common. One possibility is 

for (i = 0; i < n; i++) 
for (j = 0; j < m; j++) 

if (a[i] == b[j]) 
goto found; 

I• didn't find any common element •I 

found: 
I• got one: a[i] == b[j] •I 

Code involving a goto can always be written without one, though perhaps at 
the price of some repeated tests or an extra variable. For example, the array 
search becomes 

found = 0; 
for (i = 0; i < n && !found; i++) 

for (j = 0; j < m && !found; j++) 
if (a[i] == b[j]) 

found = 1; 
if (found) 

I• got one: a[i-1] == b[j-1] •I 

else 
I• didn't find any common element •I 

With a few exceptions like those cited here, code that relies on goto state-
ments is generally harder to understand and to maintain than code without 
gotos. Although we are not dogmatic about the matter, it does seem that 
goto statements should be used rarely, if at all. 



cHAPTER 4: Functions and Program Structure 

Functions break large computing tasks into smaller ones, and enable people 
to build on what others have done instead of starting over from scratch. 
Appropriate functions hide details of operation from parts of the program that 
don't need to know about them, thus clarifying the whole, and easing the pain of 
making changes. 

C has been designed to make functions efficient and easy to use; C programs 
generally consist of many small functions rather than a few big ones. A pro-
gram may reside in one or more source files. Source files may be compiled 
separately and loaded together, along with previously compiled functions from 
libraries. We will not go into that process here, however, since the details vary 
from system to system. 

Function declaration and definition is the area where the ANSI standard has 
made the most visible changes to C. As we saw first in Chapter 1, it is now 
possible to declare the types of arguments when a function is declared. The 
syntax of function definition also changes, so that declarations and definitions 
match. This makes it possible for a compiler to detect many more errors than it 
could before. Furthermore, when arguments are properly declared, appropriate 
type coercions are performed automatically. 

The standard clarifies the rules on the scope of names; in particular, it 
requires that there be only one definition of each external object. Initialization 
is more general: automatic arrays and structures may now be initialized. 

The C preprocessor has also been enhanced. New preprocessor facilities 
include a more complete set of conditional compilation directives, a way to 
create quoted strings from macro arguments, and better control over the macro 
expansion process. 

4. 1 Basics of Functions 
To begin, let us design and write a program to print each line of its input 

that contains a particular "pattern" or string of characters. (This is a special 
case of the UNIX program grep.) for example, searching for the pattern of 

67 



68 FUNCTIONS AND PROGRAM STRUCTURE 

letters "ould" in the set of lines 

Ah Love! could you and I with Fate conspire 
To qrasp this sorry Scheme of Thinqs entire, 
Would not we shatter it to bits -- and then 
Re-mould it nearer to the Heart's Desire! 

will produce the output 

Ah Love! could you and I with Fate conspire 
Would not we shatter it to bits -- and then 
Re-mould it nearer to the Heart's Desire! 

The job falls neatly into three pieces: 

while ( there·s another line) 
if (the line contains the pattern) 

print it 

CHAPTER 4 

Although it's certainly possible to put the code for all of this in main, a 
better way is to use the structure to advantage by making each part a separate 
function. Three small pieces are easier to deal with than one big one, because 
irrelevant details can be buried in the functions, and the chance of unwanted 
interactions is minimized. And the pieces may even be useful in other pro-
grams. 

"While there's another line" is getline, a function that we wrote in 
Chapter 1, and "print it" is printf, which someone has already provided for 
us. This means we need only write a routine to decide whether the line contains 
an occurrence of the pattern. 

We can solve that problem by writing a function strindex ( s, t) that 
returns the position or index in the string s where the string t begins, or -1 if 
s doesn't contain t. Because C arrays begin at position zero, indexes will be 
zero or positive, and so a negative value like -1 is convenient for signaling 
failure. When we later need more sophisticated pattern matching, we only have 
to replace strindex; the rest of the code can remain the same. (The standard 
library provides a function strstr that is similar to strindex, except that it 
returns a pointer instead of an index.> 

Given this much design, filling in the details of the program is straightfor-
ward. Here is the whole thing, so you can see how the pieces fit together. For 
now, the pattern to be searched for is a literal string, which is not the most gen-
eral of mechanisms. We will return shortly to a discussion of how to initialize 
character arrays, and in ChapterS will show how to make the pattern a param-
eter that is set when the program is run. There is also a slightly different ver-
sion of getline; you might find it instructive to compare it to the one in 
Chapter 1. 



SECTION 4.1 BASICS OF FUNCTIONS 69 

#include <stdio.h> 
#define MAXLINE 1000 /* maximum input line length */ 

int getline(char line[], int max); 
int strindex(char source[], char searchfor[]); 

char pattern[] = "ould"; I* pattern to search for */ 

/* find all lines matching pattern */ 
main() 
{ 

} 

char line[MAXLINE]; 
int found = 0; 

while (getline(line, MAXLINE) > 0) 
if (strindex(line, pattern) >= 0) { 

print£ ( "%s", line) ; 
found++; 

} 
return found; 

/* getline: get line into s, return length */ 
int getline(char s(], int lim) 
{ 

} 

int c, i; 

i = 0; 
while (--lim> 0 && (c=getchar()) I= EOF && c I= '\n') 

s[i++] = c; 
if (c == '\n') 

s[i++] = c; 
s[i] = '\0'; 
return i; 

/* strindex: return index of t in s, -1 if none */ 
int strindex(char s[], chart[]) 
{ 

} 

int i, j, k; 

for (i = 0; s[i] I= '\0'; i++) { 

} 

for (j=i, k=O; t[k]l='\0' && s[j]==t[k]; j++, k++) 

if (k > 0 && t[k] == '\0') 
return i; 

return -1; 

Each function definition has the form 



70 FUNCTIONS AND PROGRAM STRUCTURE 

return-type function-name (argument declarations) 
{ 

declarations and statements 
} 

Various parts may be absent; a minimal function is 
dummy() {} 

CHAPTER 4 

which does nothing and returns nothing. A do-nothing function like this is 
sometimes useful as a place holder during program development. If the return 
type is oq1itted, int is assumed. 

A program is just a set of definitions of variables and functions. Communi-
cation between the functions is by arguments and values returned by the func-
tions, and through external variables. The functions can occur in any order in 
the source file, and the source program can be split into multiple files, so long 
as no function is split. 

The return statement is the mechanism for returning a value from the 
called function to its caller. Any expression can follow return: 

return expression; 

The expression will be converted to the return type of the function if necessary. 
Parentheses are often used around the expression, but they are optional. 

The calling function is free to ignore the returned value. Furthermore, there 
need be no expression after return; in that case, no value is returned to the 
caller. Control also returns to the caller with no value when execution "falls off 
the end" of the function by reaching the closing right brace. It is not illegal, 
but probably a sign of trouble, if a function returns a value from one place and 
no value from another. In any case, if a function fails to return a value, its 
"value" is certain to be garbage. 

The pattern-searching program returns a status from main, the number of 
matches found. This value is available for use by the environment that called 
the program. 

The mechanics of how to compile and load a C program that resides on mul-
tiple source files vary from one system to the next. On the UNIX system, for 
example, the cc command mentioned in Chapter 1 does the job. Suppose that 
the three functions are stored in three files called main. c, get line. c, and 
strindex. c. Then the command 

cc main.c getline.c strindex.c 

compiles the three files, placing the resulting object code in files main. o, 
getline. o, and strindex. o, then loads them all into an executable file 
called a. out. If there is an error, say in main. c, that file can be recompiled 
by itself and the result loaded with the previous object files, with the command 

cc main.c getline.o strindex.o 

The cc command uses the " . c" versus " . o" naming convention to distinguish 



SECTION 4.2 FUNCTIONS RETURNING NON-INTEGERS 71 

source files from object files. 

Exercise 4-1. Write the function strrindex ( s, t), which returns the position 
of the rightmost occurrence of t in s, or -1 if there is none. D 

4.2 Functions Returning Non-integers 
So far our examples of functions have returned either no value (void) or an 

int. What if a function must return some other type? Many numerical func-
tions like sqrt, sin, and cos return double; other specialized functions 
return other types. To illustrate how to deal with this, let us write and use the 
function a tof ( s ) , which converts the string s to its double-precision floating-
point equivalent. atof is an extension of atoi, which we showed versions of in 
Chapters 2 and 3. It handles an optional sign and decimal point, and the pres-
ence or absence of either integer part or fractional part. Our version is not a 
high-quality input conversion routine; that would take more space than we care 
to use. The standard library includes an a tof; the header < stdlib. h> 
declares it. 

First, atof itself must declare the type of value it returns, since it is not 
int. The type name precedes the function name: 

#include <ctype.h> 

I* atof: convert string s to double */ 
double atof(char s[]) 
{ 

} 

double val, power; 
int i, sign; 

for (i = 0; isspace(s[i]); i++) /*skip white space*/ 

sign = ( s [ i] == '-' ) ? -1 : 1 ; 
if (s[i] == '+' I I s[i] == '-') 

i++; 
for (val= 0.0; isdigit(s[i]); i++) 

val= 10.0 *val + (s[i] - '0'); 
if (s[i] == '.') 

i++; 
for (power= 1.0; isdigit(s[i]); i++) { 

val= 10.0 *val+ (s[i] - '0'); 
power *= 10.0; 

} 
return sign * val I power; 

Second, and just as important, the calling routine must know that atof 
returns a non-int value. One way to ensure this is to declare atof explicitly 



72 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4 

in the calling routine. The declaration is shown in this primitive calculator 
(barely adequate for check-book balancing), which reads one number per line, 
optionally preceded by a sign, and adds them up, printing the running sum after 
each input: 

#include <stdio.h> 

#define MAXLINE 100 

/* rudimentary calculator */ 
main() 
{ 

} 

double sum, atof(char []); 
char line[MAXLINE]; 
int getline(char line[], int max); 

sum = 0; 
while (getline(line, MAXLINE) > 0) 

printf("\t%g\n", sum+= atof(line)); 
return 0; 

The declaration 
double sum, atof(char []); 

says that sum is a double variable, and that atof is a function that takes one 
char [ ] argument and returns a double. 

The function atof must be declared and defined consistently. If atof 
itself and the call to it in main have inconsistent types in the same source file, 
the error will be detected by the compiler. But if (as is more likely) atof were 
compiled separately, the mismatch would not be detected, atof would return a 
double that main would treat as an int, and meaningless answers would 
result. 

In the light of what we have said about how declarations must match defini-
tions, this might seem surprising. The reason a mismatch can happen is that if 
there is no function prototype, a function is implicitly declared by its first 
appearance in an expression, such as 

sum += atof(line) 

If a name that has not been previously declared occurs in an expression and is 
followed by a left parenthesis, it is declared by context to be a function name, 
the function is assumed to return an int, and nothing is assumed about its 
arguments. Furthermore, if a function declaration does not include arguments, 
as in 

double atof ( ) ; 

that too is taken to mean that nothing is to be assumed about the arguments of 
a to£; all parameter checking is turned off. This special meaning of the empty 



SECTION 4.3 EXTERNAL VARIABLES 73 

argument list is intended to permit older C programs to compile with new com-
pilers. But it's a bad idea to use it with new programs. If the function takes 
arguments, declare them; if it takes no arguments, use void. 

Given atof, properly declared, we could write atoi (convert a string to 
int) in terms of it: 

/* atoi: convert string s to integer using atof */ 
int atoi(char s[]) 
{ 

double atof(char s[]); 

return (int) atof(s); 
} 

Notice the structure of the declarations and the return statement. The value 
of the expression in 

return expression ; 

is converted to the type of the function before the return is taken. Therefore, 
the value of atof, a double, is converted automatically to int when it 
appears in this return, since the function atoi returns an int. This opera-
tion does potentially discard information, however, so some compilers warn of it. 
The cast states explicitly that the operation is intended, and suppresses any 
warning. 

Exercise 4-2. Extend atof to handle scientific notation of the form 
123.45e-6 

where a floating-point number may be followed by e or E and an optionally 
signed exponent. D 

4.3 External Variables 
A C program consists of a set of external objects, which are either variables 

or functions. The adjective "external" is used in contrast to "internal," which 
describes the arguments and variables defined inside functions. External vari-
ables are defined outside of any function, and are thus potentially available to 
many functions. Functions themselves are always external, because C does not 
allow functions to be defined inside other functions. By default, external vari-
ables and functions have the property that all references to them by the same 
name, even from functions compiled separately, are references to the same 
thing. (The standard calls this property external linkage.) In this sense, exter-
nal variables are analogous to Fortran COMMON blocks or variables in the 
outermost block in Pascal. We will see later how to define external variables 
and functions that are visible only within a single source file. 



74 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER4 

Because external variables are globally accessible, they provide an alternative 
to function arguments and return values for communicating data between func-
tions. Any function may access an external variable by referring to it by name, 
if the name has been declared somehow. 

If a large number of variables must be shared among functions, external 
variables are more convenient and efficient than long argument lists. As 
pointed out in Chapter 1, however, this reasoning should be applied with some 
caution, for it can have a bad effect on program structure, and lead to programs 
with too many data connections between functions. 

External variables are also useful because of their greater scope and lifetime. 
Automatic variables are internal to a function; they come into existence when 
the function is entered, and disappear when it is left. External variables, on the 
other hand, are permanent, so they retain values from one function invocation to 
the next. Thus if two functions must share some data, yet neither calls the 
other, it is often most convenient if the shared data is kept in external variables 
rather than passed in and out via arguments. 

Let us examine this issue further with a larger example. The problem is to 
write a calculator program that provides the operators +, -, *• and /. Because 
it is easier to implement, the calculator will use reverse Polish notation instead 
of infix. (Reverse Polish is used by some pocket calculators, and in languages 
like Forth and Postscript.) 

In reverse Polish notation, each operator follows its operands; an infix 
expression like 

(1 - 2) * (4 + 5) 

is entered as 

1 2 - 4 5 + * 

Parentheses are not needed; the notation is unambiguous as long as we know 
how many operands each operator expects. 

The implementation is simple. Each operand is pushed onto a stack; when 
an operator arrives, the proper number of operands (two for binary operators) is 
popped, the operator is applied to them, and the result is pushed back onto the 
stack. In the example above, for instance, 1 and 2 are pushed, then replaced by 
their difference, -1. Next, 4 and 5 are pushed and then replaced by their sum, 
9. The product of -1 and 9, which is -9, replaces them on the stack. The 
value on the top of the stack is popped and printed when the end of the input 
line is encountered. 

The structure of the program is thus a loop that performs the proper opera-
tion on each operator and operand as it appears: 



SECTION 4.3 EXTERNAL VARIABLES 75 

while (next operator or operand is not end-of-file indicator) 
if (number) 

push it 
else if (operator) 

pop operands 
do operation 
push result 

else if (newline) 
pop and print top of stack 

else 
error 

The operations of pushing and popping a stack are trivial, but by the time 
error detection and recovery are added, they are long enough that it is better to 
put each in a separate function than to repeat the code throughout the whole 
program. And there should be a separate function for fetching the next input 
operator or operand. 

The main design decision that has not yet been discussed is where the stack 
is, that is, which routines access it directly. One possibility is to keep it in 
main, and pass the stack and the current stack position to the routines that 
push and pop it. But main doesn't need to know about the variables that con-
trol the stack; it only does push and pop operations. So we have decided to 
store the stack and its associated information in external variables accessible to 
the push and pop functions but not to main. 

Translating this outline into code is easy enough. If for now we think of the 
program as existing in one source file, it will look like this: 

#includes 
, #defines 

function declarations for main 

main() { ... } 

external variables for push and pop 

void push(double f) { ... } 
double pop(void) { ... } 

int getop ( char s [ ] ) { .. . } 

routines called by getop 

Later we will discuss how this might be split into two or more source files. 
The function main is a loop containing a big switch on the type of opera-

tor or operand; this is a more typical use of switch than the one shown in Sec-
tion 3.4. 



76 FUNCTIONS AND PROGRAM STRUCTURE 

#include <stdio.h> 
#include <stdlib.h> I* for atof() *I 

CHAPTER 4 

#define MAXOP 100 
#define NUMBER •o• 

I* max size of operand or operator *I 
I* signal that a number was found *I 

int getop(char [)); 
void push(double); 
double pop(void); 

I* reverse Polish calculator *I 
main() 
{ 

} 

int type; 
double op2 ; · 
char s [ MAXOP 1 ; 

while ((type= getop(s)) I= EOF) { 
switch (type) { 

} 

case NUMBER: 
push(atof(s)); 
break; 

case '+': 
push ( pop ( ) + pop ( ) ) ; 
break; 

case • *': 
push(pop() *pop()); 
break; 

case • -•: 
op2 = pop(); 
push(pop() - op2); 
break; 

case • I': 
op2 = pop(); 
if (op2 I= 0.0) 

push(pop() I op2); 
else 

printf("error: zero divisor\n"); 
break; 

case '\n •: 
print£( "\t%.8g\n" 9 pop()); 
break; 

default: 

} 

printf("error: unknown command %s\n" 9 s); 
break; 

return 0; 



SECTION 4.3 EXTERNAL VARIABLES 77 

Because + and * are commutative operators, the order in which the popped 
operands are combined is irrelevant, but for - and I the left and right operands 
must be distinguished. In 

push(pop() - pop()); 

the order in which the two calls of pop are evaluated is not defined. To 
guarantee the right order, it is necessary to pop the first value into a temporary 
variable as we did in main. 

#define MAXVAL 100 /* maximum depth of val stack */ 

int sp = 0; I* next free stack position */ 
/* value stack */ double val[MAXVAL]; 

I* push: push f onto value stack */ 
void push(double f) 
{ 

} 

if ( sp < MAXVAL) 
val[sp++] = f; 

else 
printf("error: stack full. can't push %9''n". f); 

/* pop: pop and return top value from stack */ 
double pop(void) 
{ 

} 

if (sp > 0) 
return val[--sp]; 

else { 

} 

printf("error: stack empty'n"); 
return 0.0; 

A variable is external if it is defined outside of any function. Thus the stack 
and stack index that must be shared by push and pop are defined outside of 
these functions. But main itself does not refer to the stack or stack position-
the representation can be hidden. 

Let us now turn to the implementation of getop, the function that fetches 
the next operator or operand. The task is easy. Skip blanks and tabs. If the 
next character is not a digit or a decimal point, return it. Otherwise, collect a 
string of digits (which might include a decimal point), and return NUMBER, the 
signal that a number has been collected. 



78 FUNCTIONS AND PROGRAM STRUCTURE 

#include <ctype.h> 

int getch(vo:j.d); 
void ungetch(int); 

/* getop: get next operator or numeric operand */ 
int getop(char s[]) 
{ 

int i, c; 

CHAPTER 4 

while ((s[O] = c = getch()) -- , , I I 
I I c == '\t') 

} 

s[1] = '\0'; 
if ( lisdigit(c) && c I='.') 

return c; /* not a number */ 
i = 0; 
if (isdigit(c)) /*collect integer part*/ 

while (isdigit(s[++i] = c = getch())) 

if (c == '.') /*collect fraction part*/ 
while (isdigit(s[++i] = c = getch())) 

' s [ i] = '\0,; 
if (c I= EOF) 

ungetch ( c ) ; 
return NUMBER; 

What are getch and ungetch? It is often the case that a program cannot 
determine that it has read enough input until it has read too much. One 
instance is collecting the characters that make up a number: until the first non-
digit is seen, the number is not complete. But then the program has read one 
character too far, a character that it is not prepared for. 

The problem would be solved if it were possible to "un-read" the unwanted 
character. Then, every time the program reads one character too many, it could 
push it back on the input, so the rest of the code could behave as if it had never 
been read. Fortunately, it's easy to simulate un-getting a character, by writing 
a pair of cooperating functions. getch delivers the next input character to be 
considered; ungetch remembers the characters put back on the input, so that 
subsequent calls to getch will return them before reading new input. 

How they work together is simple. ungetch puts the pushed-back charac-
ters into a shared buffer-a character array. getch reads from the buffer if 
there is anything there, and calls if the buffer is empty. There must 
also be an index variable that records the J)osition of the current character in 
the buffer. 

Since the buffer and the index are shared by getch and ungetch and 
must retain their values between they must be external to both routines. 
Thus we can write getch, ungetch, and their variables as: 



SECTION 4.3 EXTERNAL VARIABLES 79 

#define BUFSIZE 100 

char buf[BUFSIZE]; 
int bufp = 0; 

/* buffer for ungetch */ 
/* next free position in buf */ 

int getch(void) /* get a (possibly pushed back) character */ 
{ 

return (bufp > 0) ? buf[--bufp] : getchar(); 
} 

void ungetch(int c) /* push character back on input */ 
{ 

} 

if (bufp >= BUFSIZE) 
printf("ungetch: too many characters\n"); 

else 
buf[bufp++] = c; 

The standard library includes a function ungetc that provides one character of 
push back; we will discuss it in Chapter 7. We have used an array for the push-
back, rather than a single character, to illustrate a more general approach. 

Exercise 4-3. Given the basic framework, it's straightforward to extend the cal-
culator. Add the modulus (%) operator and provisions for negative numbers. 0 

Exercise 4-4. Add commands to print the top element of the stack without pop-
ping, to duplicate it, and to swap the top two elements. Add a command to 
clear the stack. o 
Exercise 4-5. Add access to library functions like sin, exp, and pow. See 
<math.h> in Appendix B, Section 4. 0 

Exercise 4-6. Add commands for handling variables. (It's easy to provide 
twenty-six variables with single-letter names.) Add a variable for the most 
recently printed value. 0 

Exercise 4-7. Write a routine ungets ( s) that will push back an entire string 
onto the input. Should ungets know about buf and bufp, or should it just 
use ungetch? 0 

Exercise 4-8. Suppose that there will never be more than one character of 
pushback. Modify getch and ungetch accordingly. 0 

Exercise 4-9. Our getch and ungetch do not handle a pushed-back EOF 
correctly. Decide what their properties ought to be if an EOF is pushed back, 
then implement your design. o 
Exercise 4-10. An alternate organization uses getline to read an entire input 
line; this makes getch and ungetch unnecessary. Revise the calculator to use 
this approach. 0 



80 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4 

4.4 Scope Rules 
The functions and external variables that make up a C program need not all 

be compiled at the same time; the source text of the program may be kept in 
several files, and previously compiled routines may be loaded from libraries. 
Among the questions of interest are 

• How are declarations written so that variables are properly declared during 
compilation? 

• How are declarations arranged so • that all the pieces will be properly con-
nected when the program is loaded'! 

• How are declarations organized so there is only one copy? 
• How are external variables initialized? 

Let us discuss these topics by reorganizing the calculator program into several 
files. As a practical matter, the calculator is too small to be worth splitting, but 
it is a fine illustration of the issues that arise in larger programs. 

The scope of a name is the part of the program within which the name can 
be used. For an automatic variable declared at the beginning of a function, the 
scope is the function in which the name is declared. Local variables of the same 
name in different functions are unrelated. The same is true of the parameters 
of the function, which are in effect local variables. 

The scope of an external variable or a function lasts from the point at which 
it is declared to the end of the file being compiled. For example, if main, sp, 
val, push, and pop are defined in one file, in the order shown above, that is, 

main() { ... } 

int sp = 0; 
double val[MAXVAL]; 

void push (double f ) { ... } 

double pop(void) { ... } 

then the variables sp and val may be used in push and pop simply by nam-
ing them; no further declarations are needed. But these names are not visible in 
main, nor are push and pop themselves. 

On the other hand, if an external variable is to be referred to before it is 
defined, or if it is defined in a different source file from the one where it is 
being used, then an extern declaration is mandatory. 

It is important to distinguish between the declaration of an external variable 
and its definition. A declaration announces the properties of a variable (pri-
marily its type); a definition also causes storage to be set aside. If the lines 

int sp; 
double val[MAXVAL]; 

appear outside of any function, they define the external variables sp and val, 



SECTION 4.5 HEADER FILES 81 

cause storage to be set aside, and also serve as the declaration for the rest of 
that source file. On the other hand, the lines 

extern int sp; 
extern double val[]; 

declare for the rest of the source file that sp is an int and that val is a 
double array (whose size is determined elsewhere), but they do not create the 
variables or reserve storage for them. 

There must be only one definition of an external variable among all the files 
that make up the source program; other files may contain extern declarations 
to access it. (There may also be extern declarations in the file containing the 
definition.) Array sizes must be specified with the definition, but are optional 
with an extern declaration. 

Initialization of an external variable goes only with the definition. 
Although it is not a likely organization for this program, the functions push 

and pop could be defined in one file, and the variables val and sp defined and 
initialized in another. Then these definitions and declarations would be neces-
sary to tie them together: 

Infilel: 
extern int sp; 
extern double val[]; 

void push(double f) { } 

double pop(void) { ... } 

Infile2: 
int sp = 0; 
double val[MAXVAL]; 

Because the extern declarations in filel lie ahead of and the function 
definitions, they apply to all functions; one set of declarations suffices for all of 
filel. This same organization would also be needed if the definitions of sp and 
val followed their use in one file. 

4.5 Header Files 
Let us now consider dividing the calculator program into several source files, 

as it might be if each of the components were substantially bigger. The main 
function would go in one file, which we will call main. c; push, pop, and their 
variables go into a second file, stack. c; getop goes into a third, getop. c. 
Finally, getch and ungetch go into a fourth file, getch. c; we separate them 
from the others because they would come from a separately-compiled library in 
a realistic program. 



81 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4 

There is one more thing to worry about-the definitions and declarations 
shared among the files. As much as possible, we want to centralize this, so that 
there is only one copy to get right and keep right as the program evolves. 
Accordingly, we will place this common material in a header file, calc. h, 
which will be included as necessary. (The #include line is described in Sec-
tion 4.11.) The resulting program then looks like this: 

main.c: 

#include <stdio.h> 
#include <stdlib.h> 
#include "calc.h" 
#define MAXOP 100 
main( l { 

} 

calc.h: 

#define NUMBER '0' 
void push(doublel; 
double pop(void); 
int getop(char []); 
int getch(void); 
void ungetch(int); 

getop.c: 

#include <stdio.h> 
#include <ctype.h> 
#include "calc.h" 
getop() 

getch.c: 

#include <stdio.h> 
#define BUFSIZE 100 
char buf[BUFSIZE]; 
int bufp = 0; 
int getchtvoid) 

void ungetch(int) 

stack.c: 

#include <stdio.h> 
#include "calc.h" 
#define MAXVAL 100 
int sp = 0; 
double val[MAXVAL]; 
void push(double) { 

double pop(void) 

There is a tradeoff between the desire that each file have access only to the 
information it needs for its job and the practical reality that it is harder to 
maintain more header files. Up to some moderate program size, it is probably 
best to have one header file that contains everything that is to be shared 
between any two parts of the program; that is the decision we made here. For a 
much larger program, more organization and more headers would be needed. 



SECTION 4.7 REGISTER VARIABLES 83 

4.6 Static Variables 
The variables sp and val in stack. c, and buf and bufp in getch. c, 

are for the private use of the functions in their respective source files, and are 
not meant to be accessed by anything else. The static declaration, applied to 
an external variable or function, limits the scope of that object to the rest of the 
source file being compiled. External static thus provides a way to hide 
names like buf and bufp in the getch-ungetch combination, which must be 
external so they can be shared, yet which should not be visible to users of 
getch and ungetch. 

Static storage is specified by prefixing the normal declaration with the word 
static. If the two routines and the two variables are compiled in one file, as 
in 

static char buf[BUFSIZE]; 
static int bufp = 0; 

int getch (void) { ... } 

void ungetch( int c) { ... } 

/* buffer for ungetch */ 
/* next free position in buf */ 

then no other routine will be able to access buf and bufp, and those names 
will not conflict with the same names in other files of the same program. In the 
same way, the variables that push and pop use for stack manipulation can be 
hidden, by declaring sp and val to be static. 

The external static declaration is most often used for variables, but it can 
be applied to functions as well. Normally, function names are global, visible to 
any part of the entire program. If a function is declared static, however, its 
name is invisible outside of the file in which it is declared. 

The static declaration can also be applied to internal variables. Internal 
static variables are local to a particular function just as automatic variables 
are, but unlike automatics, they remain in existence rather than coming and 
going each time the function is activated. This means that internal static 
variables provide private, permanent storage within a single function. 

Exercise 4-11. Modify getop so that it doesn't need to use ungetch. Hint: 
use an internal static variable. D 

4.7 Register Variables 
A register declaration advises the compiler that the variable in question 

will be heavily used. The idea is that register variables are to be placed in 
machine registers, which may result in smaller and faster programs. But com-
pilers are free to ignore the advice. 

The register declaration looks like 



84 FUNCTIONS AND PROGRAM STRUCTURE 

register int x; 
register char c; 

CHAPTER 4 

and so on. The register declaration can only be applied to automatic vari-
ables and to the formal parameters of a function. In this latter case, it looks 
like 

£(register unsigned m, register long n) 
{ 

register int i; 

} 

In practice, there are restrictions on register variables, reflecting the realities 
of underlying hardware. Only a few variables in each function may be kept in 
registers, and only certain types are allowed. Excess register declarations are 
harmless, however, since the word register is ignored for excess or disallowed 
declarations. And it is not possible to take the address of a register variable (a 
topic to be covered in Chapter 5), regardless of whether the variable is actually 
placed in a register. The specific restrictions on number and types of register 
variables vary from machine to machine. 

4.8 Block Structure 
C is not a block-structured language in the sense of Pascal or similar 

languages, because functions may not be defined within other functions. On the 
other hand, variables can be defined in a block-structured fashion within a func-
tion. Declarations of variables (including initializations) may follow the left 
brace that introduces any compound statement, not just the one that begins a 
function. Variables declared in this way hide any identically named variables in 
outer blocks, and remain in existence until the matching right brace. For exam-
ple, in 

if (n > 0) { 
int i; /* declare a new i *I 

for (i = 0; i < n; i++) 

} 

the scope of the variable i is the "true" branch of the if; this i is unrelated to 
any i outside the block. An automatic variable declared and initialized in a 
block is initialized each time the block is entered. A static variable is initial-
ized only the first time the block is entered. 

Automatic variables, including formal parameters, also hide external vari-
ables and functions of the same name. Given the declarations 



SECTION 4.9 

int x; 
int y; 

f(double x) 
{ 

double y; 

} 

INITIALIZATION 85 

then within the function f, occurrences of x refer to the parameter, which is a 
double; outside of f, they refer to the external int. The same is true of the 
variable y. 

As a matter of style, it's best to avoid variable names that conceal names in 
an outer scope; the potential for confusion and error is too great. 

4.9 Initialization 
Initialization has been mentioned in passing many times so far, but always 

peripherally to some other topic. This section summarizes some of the rules, 
now that we have discussed the various storage classes. 

In the absence of explicit initialization, external and static variables are 
guaranteed to be initialized to zero; automatic and register variables have unde-
fined (i.e., garbage) initial values. 

Scalar variables may be initialized when they are defined, by following the 
name with an equals sign and an expression: 

int x = 1; 
char squote = '\''; 
long day = 1000L * 60L * 60L * 24L; /* milliseconds/day */ 

For external and static variables, the initializer must be a constant expression; 
the initialization is done once, conceptually before the program begins execution. 
For automatic and register variables, it is done each time the function or block 
is entered. 

For automatic and register variables, the initializer is not restricted to being 
a constant: it may be any expression involving previously defined values, even 
function calls. For example, the initializations of the binary search program in 
Section 3.3 could be written as 

int binsearch(int x, int v[], int n) 
{ 

} 

instead of 

int low = 0; 
int high = n - 1; 
int mid; 



86 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4 

int low, high, mid; 

low = 0; 
high = n - 1; 

In effect, initializations of automatic variables are just shorthand for assignment 
statements. Which form to prefer is largely a matter of taste. We have gen-
erally used explicit assignments, because initializers in declarations are harder to 
see and further away from the point of use. 

An array may be initialized by following its declaration with a list of initial-
izers enclosed in braces and separated by commas. For example, to initialize an 
array days with the number of days in each month: 

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; 

When the size of the array is omitted, the compiler will compute the length by 
counting the initializers, of which there are 12 in this case. 

If there are fewer initializers for an array than the number specified, the 
missing elements will be zero for extemal, static, and automatic variables. It is 
an error to have too many initializers. There is no way to specify repetition of 
an initializer, nor to initialize an element in the middle of an array without sup-
plying all the preceding values as well. · 

Character arrays are a special case of initialization; a string may be used 
instead of the braces and commas notation: 

char pattern [] = "ould"; 

is a shorthand for the longer but equivalent 

char pattern[] = { 'o', 'u', '1', 'd', '\0' }; 

In this case, the array size is five (four characters plus the terminating ' \0'). 

4.1 0 Recursion 
C functions may be used recursively; that is, a function may call itself either 

directly or indirectly. Consider printing a number as a character string. As we 
mentioned before, the digits are generated in the wrong order: low-order digits 
are available before high-order digits, but they have to be printed the other way 
around. 

There are two solutions to this problem. One is to store the digits in an 
array as they are generated, then print them in the reverse order, as we did with 
i toa in Section 3.6. The alternative is a recursive solution, in which printd 
first calls itself to cope with any leading digits, then prints the trailing digit. 
Again, this version can fail on the largest negative number. 



SECfiON 4.10 RECURSION 87 

#include <stdio.h> 

I* printd: print n in decimal *I 
void printd(int n) 
{ 

if (n < 0) { 
putchar('-'); 
n = -n; 

if (n I 10) 
printd(n I 10); 

putchar(n% 10 + '0'); 

When a function calls itself recursively, each invocation gets a fresh set of all 
the automatic variables, independent of the previous set. Thus in 
printd(123) the firstprintdreceives the argumentn = 123. Itpasses 12 
to a second printd, which in tum passes 1 to a third. The third-level printd 
prints 1, then returns to the second level. That printd prints 2, then returns 
to the first level. That one prints 3 and terminates. 

Another good example of recursion is quicksort, a sorting algorithm 
developed by C. A. R. Hoare in 1962. Given an array, one element is chosen 
and the others are partitioned into two subsets-those less than the partition ele-
ment and those greater than or equal to it. The same process is then applied 
recursively to the two subsets. When a subset has fewer than two elements, it 
doesn't need any sorting; this stops the recursion. 

Our version of quicksort is not the fastest possible, but it's one of the sim-
plest. We use the middle element of each subarray for partitioning. 

I* qsort: sort v[left] ... v[right] into increasing order *I 
void qsort(int v[], int left, int right) 
{ 

int i, last; 
void swap(int v[], inti, int j); 

if (left >= right) 
return; 

I* do nothing if array contains *I 
I* fewer than two elements *I 

swap(v, left, (left 
last = left; 

+ right)l2); I* move partition elem *I 

for (i = left+1; i <= right; i++) 
if (v(i] < v[left]) 

swap(v, ++last, i); 

I* to v[O] *I 
I* partition *I 

swap(v, left, last); I* restore partition elem *I 
qsort(v, left, last-1); 
qsort(v, last+l, right); 

We moved the swapping operation into a separate function swap because it 
occurs three times in qsort. 



88 FUNCTIONS AND PROGRAM STRUCTURE 

/* swap: interchange v[i] and v[j] */ 
void swap(int v[], int i, int j) 
{ 

} 

int temp; 

temp= v[i]; 
v[i] = v(j]; 
v[j] = temp; 

CHAPTER4 

The standard library includes a version of qsort that can sort objects of any 
type. 

Recursion may provide no saving in storage, since somewhere a stack of the 
values being processed must be maintained. Nor will it be faster. But recursive 
code is more compact, and often much easier to write and understand than the 
non-recursive equivalent. Recursion is especially convenient for recursively 
defined data structures like trees; we will see a nice example in Section 6.5. 

Exercise 4-12. Adapt the ideas of printd to write a recursive version of itoa; 
that is, convert an integer into a string by calling a recursive routine. D 

Exercise 4-13. Write a recursive version of the function reverse ( s), which 
reverses the string s in place. D 

4. 11 The C Preprocessor 
C provides certain language facilities by means of a preprocessor, which is 

conceptually a separate first step in compilation. The two most frequently used 
features are #include, to include the contents of a file during compilation, 
and #define, to replace a token by an arbitrary sequence of characters. Other 
features described in this section include conditional compilation and macros 
with arguments. 

4. 11. 1 File Inclusion 

File inclusion makes it easy to handle collections of #defines and declara-
tions (among other things). Any source line of the form 

#include "filename" 

or 
#include <.filename> 

is replaced by the contents of the file filename. If the filename is quoted, 
searching for the file typically begins where the source program was found; if it 
is not found there, or if the name is enclosed in < and >, searching follows an 
implementation-defined rule to find the file. An included file may itself contain 



SECTION 4.11 THE C PREPROCESSOR 89 

#include lines. 
There are often several #include lines at the beginning of a source file, to 

include common #define statements and extern declarations, or to access 
the function prototype declarations for library functions from headers like 
< stdio. h>. (Strictly speaking, these need not be files; the details of how 
headers are accessed are implementation-dependent.) 

#include is the preferred W3.Y to tie the declarations together for a large 
program. It guarantees that all the source files will be supplied with the same 
definitions and variable declarations, and thus eliminates a particularly nasty 
kind of bug. Naturally, when an included file is changed, all files that depend 
on it must be recompiled. 

4. 11.2 Macro Substitution 

A definition has the form 
#define name replacement text 

It calls for a macro substitution of the simplest kind-subsequent occurrences of 
the token name will be replaced by the replacement text. The name in a 
#define has the same form as a variable name; the replacement text is arbi-
trary. Normally the replacement text is the rest of the line, but a long defini-
tion may be continued onto several lines by placing a \ at the end of each line 
to be continued. The scope of a name defined with #define is from its point 
of definition to the end of the source file being compiled. A definition may use 
previous definitions. Substitutions are made only for tokens, and do not take 
place within quoted strings. For example, if YES is a defined name, there would 
be no substitution in print£ ( "YES" ) or in YESMAN. 

Any name may be defined with any replacement text. For example, 
#define forever for (;;) /* infinite loop */ 

defines a new word, forever, for an infinite loop. 
It is also possible to define macros with arguments, so the replacement text 

can be different for different calls of the macro. As an example, define a macro 
called max: 

#define max(A, B) ((A) > (B) ? (A) : (B)) 

Although it looks like a function call, a use of max expands into in-line code. 
Each occurrence of a formal parameter (here A or B) will be replaced by the 
corresponding actual argument. Thus the line 

x = max(p+q, r+sl; 

will be replaced by the line 
x = ((p+q) > (r+sl ? (p+q) : (r+s)); 

So long as the arguments are treated consistently, this macro will serve for any 



90 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4 

data type; there is no need for different kinds of max for different data types, as 
there would be with functions. 

If you examine the expansion of max, you will notice some pitfalls. The 
expressions are evaluated twice; this is bad if they involve side effects like incre-
ment operators or input and output. For instance, 

max( i++, j++) 

will increment the larger value twice. Some care also has to be taken with 
parentheses to make sure the order of evaluation is preserved; consider what 
happens when the macro 

#define square(x) x * x 

is invoked as square ( z + 1 ) . 
Nonetheless, macros are valuable. One practical example comes from 

<stdio. h>, in which getchar and putchar are often defined as macros to 
avoid the run-time overhead of a function call per character processed. The 
functions in <ctype. h> are also usually implemented as macros. 

Names may be undefined with #undef, usually to ensure that a routine is 
really a function, not a macro: 

#undef qetchar 

int qetchar(void) { ... } 

Formal parameters are not replaced within quoted strings. If, however, a 
parameter name is preceded by a # in the replacement text, the combination 
will be expanded into a quoted string with the parameter replaced by the actual 
argument. This can be combined with string concatenation to make, for exam-
ple, a debugging print macro: 

#define dprint(expr) printf(#expr " = %g\n", expr) 

When this is invoked, as in 
dprint(x/y); 

the macro is expanded into 
print£ ( "x/y" n : %q\n II f x/y) ; 

and the strings are concatenated, so the effect is 
print£ ( "x/y = %q\n 11 , x/y) ; 

Within the actual argument, each 11 is replaced by \ 11 and each \ by \\, so the 
result is a legal string constant. 

The preprocessor operator ## provides a way to concatenate actual argu-
ments during macro expansion. If a parameter in the replacement text is adja-
cent to a ##, the parameter is replaced by the actual argument, the ## and sur-
rounding white space are removed, and the result is re-scanned. For example, 
the macro paste concatenates its two arguments: 



SECTION 4.11 THE C PREPROCESSOR 91 

#define paste(front, back) front ## back 

so paste (name, 1 ) creates the token name 1. 
The rules for nested uses of ## are arcane; further details may be found in 

Appendix A. 

Exercise 4-14. Define a macro swap(t,x,y) that interchanges two arguments 
of type t. (Block structure will help.) 0 

4. 11.3 Conditional Inclusion 

It is possible to control preprocessing itself with conditional statements that 
are during preprocessing. This provides a way to include code selec-
tively, depending on the value of conditions evaluated during compilation. 

The #if line evaluates a constant integer expression (which may not include 
sizeof, casts, or enum constants). If the expression is non-zero, subsequent 
lines until an #endif or #elif or #else are included. (The preprocessor 
statement #elif is like else if.) The expression defined(name) in a #if 
is 1 if the name has been defined, and 0 otherwise. 

For example, to make sure that the contents of a file hdr. h are included 
only once, the contents of the file are surrounded with a conditional like this: 

#if ldefined(HDR) 
#define HDR 

/* contents of hdr.h go here */ 

#end if 

The first inclusion of hdr. h defines the name HDR; subsequent inclusions will 
find the name defined and skip down to the #endif. A similar style can be 

to avoid including files multiple times. If this style is used consistently, 
then each header can itself include any other headers on which it depends, 
without the user of the header having to deal with the interdependence. 

This sequence tests the name SYSTEM to decide which version of a header to 
include: 

#if SYSTEM == SYSV 
#define HDR "sysv.h" 

#eli£ SYSTEM == BSD 
#define HDR "bsd.h" 

#eli£ SYSTEM == MSDOS 
#define HDR "msdos.h" 

#else 
#define HDR "default.h" 

#end if 
#include HDR 

The #ifdef and #ifndef lines are specialized forms that test whether a 



92 FUNCTIONS AND PROGRAM STRUCTURE CHAPTER 4 

name is defined. The first example of #if above could have been written 
#ifndef HDR 
#define HDR 

/* contents of hdr.h go here */ 

#end if 



cHAPTER s: Pointers and Arrays 

A pointer is a variable that contains the address of a variable. Pointers are 
much used in C, partly beCause they are sometimes the only way to express a 
computation, and partly because they usually lead to more compact and effi-
cient code than can be obtained in other ways. Pointers and arrays are closely 
related; this chapter also explores this relationship and shows how to exploit it. 

Pointers have been lumped with the goto statement as a marvelous way to 
create impossible-to-understand programs. This is certainly true when they are 
used carelessly, and it is easy to create pointers that point somewhere unex-
pected. With discipline, however, pointers can also be used to achieve clarity 
and simplicity. This is the aspect that we will try to illustrate. 

The main change in ANSI C is to make explicit the rules about how pointers 
can be manipulated, in effect mandating what good programmers already prac-
tice and good compilers already enforce. In addition, the type void * (pointer 
to void) replaces char *as the proper type for a generic pointer. 

5. 1 Pointers and Addresses 
Let us begin with a simplified picture of how memory is organized. A typi-

cal machine has an array of consecutively numbered or addressed memory cells 
that may be manipulated individually or in contiguous groups. One common 
situation is that any byte can be a char, a pair of one-byte cells can be treated 
as a short integer, and four adjacent bytes form a long. A pointer is a group 
of cells (often two or four) that can hold an address. So if cis a char and pis 
a pointer that points to it, we could represent the situation this way: 

The unary operator &. gives the address of an object, so the statement 

93 



94 POINTERS AND ARRAYS CHAPTER 5 

P = &.c; 
assigns the address of c to the variable p, and p is said to "point to" c. The &. 
operator only applies to objects in memory: variables and array elements. It 
cannot be applied to expressions, constants, or register variables. 

The unary operator * is the indirection or dereferencing operator; when 
applied to a pointer, it accesses the object the pointer points to. Suppose that x 
and y are integers and ip is a pointer to int. This artificial sequence shows 
how to declare a pointer and how to use &. and *: 

int x = 1, y = 2, z[10]; 
int •ip; I• ip is a pointer to int •I 

ip = &.x; 
y = •ip; 
•ip = 0; 
ip = &.z[O]; 

I• ip now points to x •I 
I• y is now 1 •I 
I• x is now 0 •I 
I• ip now points to z[O] •I 

The declarations of x, y, and z are what we've seen all along. The declaration 
of the pointer ip, 

int dp; 

is intended as a mnemonic; it says that the expression *iP is an int. The syn-
tax of the declaration for a variable mimics the syntax of expressions in which 
the variable might appear. This reasoning applies to function declarations as 
well. For example, 

double •dp, atof(char •); 

says that in an expression *dP and atof ( s) have values of type double, and 
that the argument of atof is a pointer to char. 

You should also note the implication that a pointer is constrained to point to 
a particular kind of object: every pointer points to a specific data type. (There 
is one exception: a "pointer to void" is used to hold any type of pointer but 
cannot be dereferenced itself. We'll come back to it in Section 5.11.) 

If ip points to the integer x, then *iP can occur in any context where x 
could, so 

increments *iP by 10. 
The unary operators * and &. bind more tightly than arithmetic operators, so 

the assignment 
y = •ip + 1 

takes whatever ip points at, adds 1, and assigns the result to y, while 

increments what ip points to, as do 



SECTION 5.2 POINTERS AND FUNCTION ARGUMENTS 95 

and 

The parentheses are necessary in this last example; without them, the expression 
would increment ip instead of what it points to, because unary operators like * 
and ++ associate right to left. 

Finally, since pointers are variables, they can be used without dereferencing. 
For example, if iq is another pointer to int, 

iq = ip 

copies the contents of ip into iq, thus making iq point to whatever ip pointed 
to. 

5.2 Pointers and Function Arguments 
Since C passes arguments to functions by value, there is no direct way for 

the called function to alter a variable in the calling function. For instance, a 
sorting routine might exchange two out-of-order elements with a function called 
swap. It is not enough to write 

swap(a, b); 

where the swap function is defined as 

void swap(int x, int y) /* WRONG */ 
{ 

} 

int temp; 

temp = x; 
X = y; 
y = temp; 

Because of call by value, swap can't affect the arguments a and b in the rou-
tine that called it. The function above only swaps copies of a and b. 

The way to obtain the desired effect is for the calling program to pass 
pointers to the values to be changed: 

swap( &.a, &.b); 

Since the operator &. produces the address of a variable, &a is a pointer to a. In 
swap itself, the parameters are declared to be pointers, and the operands are 
accessed indirectly through them. 



96 POINTERS AND ARRAYS CHAPTER 5 

void swap(int *PX, int *PY) /* interchange *PX and *PY */ 
{ 

} 

Pictorially: 

int temp; 

temp = *PX; 
*PX = *PY; 
*PY = temp; 

in caller: 

a:O 
b:D 

in swap: 
.--------. 

Pointer arguments enable a function to access and change objects in the 
function that called it. As an example, consider a function getint that per-
forms free-format input conversion by breaking a stream of characters into 
integer values, one integer per call. getint has to return the value it found 
and also signal end of file when there is no more input. These values have to be 
passed back by separate paths, for no matter what value is used for EOF, that 
could also be the value of an input integer. 

One solution is to have getint return the end of file status as its function 
value, while using a pointer argument to store the converted integer back in the 
calling function. This is the scheme used by scanf as well; see Section 7 .4. 

The following loop fills an array with integers by calls to getint: 
int n, array[SIZE], getint(int *); 

for (n = 0; n <SIZE && getint(&array[n]) I= EOF; n++) 

Each call sets array [ n] to the next integer found in the input and increments 
n. Notice that it is essential to pass the address of array[n] to getint. 
Otherwise there is no way for getint to communicate the converted integer 
back to the caller. 

Our version of getint returns EOF for end of file, zero if the next input is 
not a number, and a positive value if the input contains a valid number. 



SECTION 5.3 

#include <ctype.h> 

int getch(void); 
void ungetch(int); 

POINTERS AND ARRAYS 97 

/* getint: get next integer from input into *Pn */ 
int getint(int *Pn) 
{ 

} 

int c, siqn; 

while (isspace(c = getch())) /* skip white space */ 

if ( lisdigit(c) && c I= EOF && c I= '+' && c I= '-') { 
ungetch(c); /*it's not a number*/ 
return 0; 

} 
siqn = (c == '-') ? -1 : 1; 
if < c == '+' I I c == '-' ) 

c = getch(); 
for (*pn = 0; isdigit(c); c = getch()) 

*Pn = 10 * *Pn + (c- '0'); 
*Pn *= sign; 
if (c I= EOF) 

ungetch ( c ) ; 
return c; 

Throughout getint, *Pn is used as an ordinary int variable. We have also 
used getch and ungetch (described in Section 4.3) so the one extra character 
that must be read can be pushed back onto the input. 

Exercise 5-l. As written, getint treats a + or - not followed by a digit as a 
valid representation of zero. Fix it to push such a character back on the input. 
0 

Exercise 5-2. Write getfloat, the floating-point analog of getint. What 
type does getfloat return as its function value? o 

5.3 Pointers and Arrays 
In C, there is a strong relationship between pointers and arrays, strong 

enough that pointers and arrays should be discussed simultaneously. Any opera-
tion that can be achieved by array subscripting can also be done with pointers. 
The pointer version will in general be faster but, at least to the uninitiated, 
somewhat harder to understand. 

The declaration 



98 POINTERS AND ARRAYS CHAPTER 5 

int a[ 10]; 

defines an array a of size 10, that is, a block of 10 consecutive objects named 
a[O], a[ 1], ... , a[9]. 

a: 
a[O]a[1] a[9] 

The notation a [ i] refers to the i-th element of the array. If pa is a pointer to 
an integer, declared as 

int •pa; 

then the assignment 
pa = &.a[O]; 

sets pa to point to element zero of a; that is, pa contains the address of a [ 0 ] . 

Now the assignment 

will copy the contents of a [ 0 ] into x. 
If pa points to a particular element of an array, then by definition pa+ 1 

points to the next element, pa+i points i elements after pa, and pa-i points i 
elements before. Thus, if pa points to a [ 0 ] , -

•(pa+1) 

refers to the contents of a [ 1 ] , pa + i is the address of a [ i ] , and * ( pa + i ) is 
the contents of a [ i ] . 

These remarks are true regardless of the type or size of the variables in the 
array a. The meaning of "adding 1 to a pointer," and by extension, all pointer 
arithmetic, is that pa+ 1 points to the next object, and pa+i points to the i-th 



SECTION 5.3 POINTERS AND ARRAYS 99 

object beyond pa. 
The correspondence between indexing and pointer arithmetic is very close. 

By definition, the value of a variable or expression of type array is the address 
of element zero of the array. Thus after the assignment 

pa = &a[O]; 

pa and a have identical values. Since the name of an array is a synonym for 
the location of the initial element, the assignment pa=&.a [ 0 ] can also be writ-
ten as 

pa = a; 

Rather more surprising, at least at first sight, is the fact that a reference to 
a [ i] can also be written as * ( a+i). In evaluating a [ i ], C converts it to 
* ( a+i) immediately; the two forms are equivalent. Applying the operator &. to 
both parts of this equivalence, it follows that &.a [ i] and a+i are also identical: 
a+i is the address of the i-th element beyond a. As the other side of this coin, 
if pa is a pointer, expressions may use it with a subscript; pa [ i] is identical to 
* ( pa+ i). In short, an array-and-index expression is equivalent to one written 
as a pointer and offset. 

There is one difference between an array name and a pointer that must be 
kept in mind. A pointer is a variable, so pa=a and pa++ are legal. But an 
array name is not a variable; constructions like a=pa and a++ are illegal. 

When an array name is passed to a function, what is passed is the location 
of the initial element. Within the called function, this argument is a local vari-
able, and so an array name parameter is a pointer, that is, a variable containing 
an address. We can use this fact to write another version of strlen, which 
computes the length of a string. 

/* strlen: return length of string s */ 
int strlen(char *S) 
{ 

int n; 

for (n = 0; *S I= '\0'; s++) 
n++; 

return n; 
} 

Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on the 
character string in the function that called strlen, but merely increments 
strlen's private copy of the pointer. That means that calls like 

strlen( "hello, world"); 
strlen(array); 
strlen(ptr); 

all work. 

I* string constant */ 
/*char array[100]; */ 
/* char *Ptr; */ 

As formal parameters in a function definition, 



100 POINTERS AND ARRAYS CHAPTERS 

char s[ J; 
and 

char *B; 

are equivalent; we prefer the latter because it says more explicitly that the 
parameter is a pointer. When an array name is passed to a function, the func-
tion can at its convenience believe that it has been handed either an array or a 
pointer, and manipulate it accordingly. It can even use both notations if it 
seems appropriate and clear. 

It is possible to pass part of an array to a function, by passing a pointer to 
the beginning of the subarray. For example, if a is an array, 

f(&a[2]) 

and 
f(a+2) 

both pass to the function f the address of the subarray that starts at a [ 2]. 
Within f, the parameter declaration can read 

f ( int arr [ J ) { ... } 

or 
f ( int *arr) { ... } 

So as far as f is concerned, the fact that the parameter refers to part of a larger 
array is of no consequence. 

If one is sure that the elements exist, it is also possible to index backwards in 
an array; p[ -1 ], p[ -2 ], and so on are syntactically legal, and refer to the ele-
ments that immediately precede p [ 0 ] . Of course, it is illegal to refer to objects 
that are not within the array bounds. 

5.4 Address Arithmetic 
If p is a pointer to some element of an array, then p++ increments p to 

point to the next element, and p+ = i increments it to point i elements beyond 
where it currently does. These and similar constructions are the simplest forms 
of pointer or address arithmetic. 

C is consistent and regular in its approach to address arithmetic; its integra-
tion of pointers, arrays, and address arithmetic is one of the strengths of the 
language. Let us illustrate by writing a rudimentary storage allocator. There 
are two routines. The first, alloc ( n), returns a pointer p to n .consecutive 
character positions, which can be used by the caller of alloc for storing char-
acters. The second, afree ( p), releases the storage thus acquired so it can be 
re-used later. The routines are "rudimentary" because the calls to afree must 
be made in the opposite order to the calls made on alloc. That' is, the storage 



SECTION 5.4 ADDRESS ARITHMETIC 101 

managed by alloc and afree is a stack, or last-in, first-out list. The stand-
ard library provides analogous functions called malloc and free that have no 
such restrictions; in Section 8. 7 we will show how they can be implemented. 

The easiest implementation is to have alloc hand out pieces of a large 
character array that we will call allocbuf. This array is private to alloc 
and afree. Since they deal in pointers, not array indices, no other routine 
need know the name of the array, which can be declared static in the source 
file containing alloc and afree, and thus be invisible outside it. In practical 
implementations, the array may well not even have a name; it might instead be 
obtained by calling malloc or by asking the operating system for a pointer to 
some unnamed block of storage. 

The other information needed is how much of allocbuf has been used. 
We use a pointer, called allocp, that points to the next free element. When 
alloc is asked for n characters, it checks to see if there is enough room left in 
allocbuf. If so, alloc returns the current value of allocp (i.e., the begin-
ning of the free block), then increments it by n to point to the next free area. If 
there is no room, alloc returns zero. afree ( p) merely sets allocp to p if 
pis inside allocbuf. 

before call to alloc: 
allocp: \ 

allocbuf: I I I 
---in use --••--- free 

after call to alloc: 
allocp: \ 

allocbuf: I I I I 
in use free 

#define ALLOCSIZE 10000 /* size of available space */ 

static char allocbuf[ALLOCSIZE]; 
static char = allocbuf; 

I* storage for alloc */ 
/* next free position */ 

char *alloc(int n) /* return pointer to n characters */ 
{ 

} 

if (allocbuf + ALLOCSIZE - allocp >= n) { /* it fits */ 
allocp += n; 
return allocp - n; /* old p */ 

} else /* not enough room */ 
return 0; 



102 POINTERS AND ARRAYS CHAPTER 5 

void afree(char *P} /* free storage pointed to by p */ 
{ 

if (p >= allocbuf && p < allocbuf + ALLOCSIZE} 
allocp = p; 

} 

In general a pointer can be initialized just as any other variable can, though 
normally the only meaningful values are zero or an expression involving the 
addresses of previously defined data of appropriate type. The declaration 

static char *allocp = allocbuf; 

defines allocp to be a character pointer and initializes it to point to the begin-
ning of allocbuf, which is the next free position when the program starts. 
This could have also been written 

static char *allocp = &allocbuf[O]; 

since the array name is the address of the zeroth element. 
The test 

if (allocbuf + ALLOCSIZE - allocp >= n} { /* it fits */ 

checks if there's enough room to satisfy a request for n characters. If there is, 
the new value of allocp would be at most one beyond the end of allocbuf. 
If the request can be satisfied, alloc returns a pointer to the beginning of a 
block of characters (notice the declaration of the function itself). If not, alloc 
must return some signal that no space is left. C guarantees that zero is a 
valid address for data, so a return value of zero can be used to signal an abnor-
mal event, in this case, no space. 

Pointers and integers are not interchangeable. Zero is the sole exception: the 
constant zero may be assigned to a pointer, and a pointer may be compared 
with the constant zero. The symbolic constant NULL is often used in place of 
zero, as a mnemonic to indicate more clearly that this is a special value for a 
pointer. NULL is defined in <stdio. h>. We will use NULL henceforth. 

Tests like 
if (allocbuf + ALLOCSIZE - allocp >= n} { /* it fits */ 

and 
if (p >= allocbuf && p < allocbuf + ALLOCSIZE} 

show several important facets of pointer arithmetic. First, pointers may be com-
pared under certain circumstances. If p and q point to members of the same 
array, then relations like ==, I=, <, >=, etc., work properly. For example, 

p < q 

is true if p points to an earlier member of the array than q does. Any pointer 
can be meaningfully compared for equality or inequality with zero. But the 
behavior is undefined for arithmetic or comparisons with pointers that do not 



SECTION 5.4 ADDRESS ARITHMETIC 103 

point to members of the same array. (There is one exception: the address of the 
first element past the end of an array can be used in pointer arithmetic.) 

Second, we have already observed that a pointer and an integer may be 
added or subtracted. The construction 

p + n 

means the address of the n-th object beyond the one p currently points to. This 
is true regardless of the kind of object p points to; n is scaled according to the 
size of the objects p points to, which is determined by the declaration of p. If 
an intis four bytes, for example, the int will be scaled by four. 

Pointer subtraction is also valid: if p and q point to elements of the same 
array, and p<q, then q-p+ 1 is the number of elements from p to q inclusive. 
This fact can be used to write yet another version of strlen: 

/* strlen: return length of string s */ 
int strlen(char *S) 
{ 

} 

char *P = s; 

while (*P I= '\0') 
p++; 

return p - s; 

In its declaration, p is initialized to s, that is, to point to the first character of 
the string. In the while loop, each character in turn is examined until the 
''\0' at the end is seen. Because p points to characters, p++ advances p to the 
next character each time, and p-s the number of characters advanced 
over, that is, the string length. (The number of characters in the string could be 
too large to store in an int. The header <stddef. h> defines a type 
ptrdiff _ t that is large enough to hold the signed difference of two pointer 
values. If we were being very cautious, however, we would use size_ t for the 
return type of strlen, to match the standard library version. size_ t is the 
unsigned integer type returned by the sizeof operator.) 

Pointer arithmetic is consistent: if we had been dealing with floats, which 
occupy more storage than chars, and if p were a pointer to float, p++ would 
advance to the next float. Thus we could write another version of alloc 
that maintains floats instead of chars, merely by changing char to float 
throughout alloc and afree. All the pointer manipulations automatically 
take into account the size of the object pointed to. 

The valid pointer operations are assignment of pointers of the same type, 
adding or subtracting a pointer and an integer, subtracting or comparing two 
pointers to members of the same array, and assigning or comparing to zero. All 
other pointer arithmetic is illegal. It is not legal to add two pointers, or to mul-
tiply or divide or shift or mask them, or to add float or double to them, or 
even, except for void *• to assign a pointer of one type to a pointer of another 
type without a cast. 



104 POINTERS AND ARRAYS CHAPTER 5 

5.5 Character Pointers and Functions 
A string constant, written as 

"I am a string" 

is an array of characters. In the internal representation, the array is terminated 
with the null character '\0' so that programs can find the end. The length in 
storage is thus one more than the number of characters between the double 
quotes. 

Perhaps the most common occurrence of string constants is as arguments to 
functions, as in 

printf( "hello, world\n"); 

When a character string like this appears in a program, access to it is through a 
character pointer; print£ receives a pointer to the beginning of the character 
array. That is, a string constant is accessed by a pointer to its first element. 

String constants need not be function arguments. If pmessage is declared 
as 

char *pmessage; 

then the statement 
pmessage = "now is the time"; 

assigns to pmessage a pointer to the character array. This is not a string 
copy; only pointers are involved. C does not provide any operators for process-
ing an entire string of characters as a unit. 

There is an important difference between these definitions: 
char amessage[] = "now is the time"; 
char *pmessage = "now is the time"; 

/* an array */ 
/* a pointer */ 

amessage is an array, just big enough to hold the sequence of characters and 
'\0' that initializes it. Individual characters within the array may be changed 
but amessage will always refer to the same storage. On the other hand, 
pmessage is a pointer, initialized to point to a string constant; the pointer may 
subsequently be modified to point elsewhere, but the result is undefined if you 
try to modify the string contents. 

pmessage: now is the time\0 I 
amessage: I now is the time\0 I 

We will illustrate more aspects of pointers and arrays by studying versions of 
two useful functions adapted from the standard library. The first function is 
strcpy ( s , t), which copies the string t to the string s. It would be nice just 
to say s=t but this copies the pointer, not the characters. To copy the 



SECTION 5.5 CHARACTER POINTERS AND FUNCTIONS 105 

characters, we need a loop. The array version is first: 

I* strcpy: copy t to s; array subscript version */ 
void strcpy(char *S, char *t) 
{ 

} 

int i; 

i = 0; 
while ( (s[i) = t[i)) I= '\0') 

i++; 

For contrast, here is a version of strcpy with pointers: 

I* strcpy: copy t to s; pointer version 1 */ 
void strcpy(char *S, char *t) 
{ 

} 

while ( (*s = *t) I= '\0') { 
S++; 
t++; 

} 

Because arguments are passed by value, strcpy can use the parameters s and 
t in any way it pleases. Here they are conveniently initialized pointers, which 
are marched along the arrays a character at a time, until the ''\0' that ter-
minates t has been copied to s. 

In practice, strcpy would not be written as we showed it above. Experi-
enced C programmers would prefer 

I* strcpy: copy t to s; pointer version 2 */ 
void strcpy(char *S, char *t) 
{ 

while ( (*S++ = *t++) I= '\0') 

} 

This moves the increment of s and t into the test part of the loop. The value of 
*t++ is the character that t pointed to before t was incremented; the postfix 
++ doesn't change t until after this character has been fetched. In the same 
way, the character is stored into the old s position before s is incremented. 
This character is also the value that is compared against ''\0' to control the 
loop. The net effect is that characters are copied from t to s, up to and includ-
ing the terminating ''\0 '. 

As the final abbreviation, observe that a comparison against ''\0' is redun-
dant, since the question is merely whether the expression is zero. So the func-
tion would likely be written as 



106 POINTERS AND ARRAYS 

I• strcpy: copy t to s; pointer version 3 •I 
void strcpy(char •s, char •t) 
{ 

while (•s++ = •t++) 

} 

CHAPTER 5 

Although this may seem cryptic at first sight, the notational convenience is con-
siderable, and the idiom should be mastered, because you will see it frequently 
inC programs. 

The strcpy in the standard library (<string. h>) returns the target 
string as its function value. 

The second routine that we will examine is strcmp ( s , t), which compares 
the character strings s and t, and returns negative, zero or positive if s is lexi-
cographically less than, equal to, or greater than t. The value is obtained by 
subtracting the characters at the first position where s and t disagree. 

I• strcmp: return <0 if s<t, 0 if s==t, >0 if s>t •I 
int strcmp(char •s, char •t) 
{ 

} 

int i; 

for (i = 0; s[i] == t[i]; i++) 
if (s[i] == '\0') 

return 0; 
return s[i] - t[i]; 

The pointer version of strcmp: 
I• strcmp: return <0 if s<t, 0 if s==t, >0 if s>t •I 
int strcmp(char •s, char •t) 
{ 

} 

for ( ; •s == •t; s++, t++) 
if (•s == '\0') 

return 0; 
return •s - •t; 

Since ++ and -- are either prefix or postfix operators, other combinations of 
* and ++ and -- occur, although less frequently. For example, 

decrements p before fetching the character that p points to. In fact, the pair of 
expressions 

*P++ = val; 
val = •--p; 

I• push val onto stack •I 
I• pop top of stack into val •I 

are the standard idioms for pushing and popping a stack; see Section 4.3. 
The header <string. h> contains declarations for the functions mentioned 



SECTION 5.6 POINTER ARRAYS; POINTERS TO POINTERS 107 

in this section, plus a variety of other string-handling functions from the stand-
ard library. 

Exercise 5-3. Write a pointer version of the function strcat that we showed 
in Chapter 2: strcat ( s, t) copies the string t to the end of s. D 

Exercise 5-4. Write the function strend ( s, t), which returns 1 if the string 
t occurs at the end of the string s, and zero otherwise. D 

Exercise 5-5. Write versions of the library functions strncpy, strncat, and 
strncmp; which operate on at most the first n characters of their argument 
strings. For example, strncpy ( s, t, n) copies at most n characters of t to s. 
Full descriptions are in Appendix B. D 

Exercise 5-6. Rewrite appropriate programs from earlier chapters and exercises 
with pointers instead of array indexing. Good possibilities include getline 
(Chapters 1 and 4), atoi, i toa, and their variants 2, 3, and 4), 
reverse (Chapter 3), and strindex and getop (Chapter 4). D 

5.6 Pointer Arrays; Pointers to Pointers 
Since pointers are variables themselves, they can be stored in arrays just as 

other variables can. Let us illustrate by writing a program that will sort a set of 
text lines into alphabetic order, a stripped-down version of the UNIX program 
sort. 

In Chapter 3 we presented a Shell sort function that would sort an array of 
integers, and in Chapter 4 we improved on it with a quicksort. The same algo-
rithms will work, except that now we have to deal with lines of text, which are 
of different lengths, and which, unlike integers, can't be compared or moved in 
a single operation. We need a data representation that will cope efficiently and 
conveniently with variable-length text lines. 

This is where the array of pointers enters. If the lines to be sorted are stored 
end-to-end in one long character array, then each line can be accessed by a 
pointer to its first character. The pointers themselves can be stored in an array. 
Two lines can be compared by passing their pointers to strcmp. When two 
out-of-order lines have to be .exchanged, the pointers in the pointer array are 
exchanged, not the text lines themselves. 

This eliminates the twin problems of complicated storage management and high 
overhead that would go with moving the lines themselves. 



108 POINTERS AND ARRAYS 

The sorting process has three steps: 

read all the lines of input 
sort them 
print them in order 

CHAPTER 5 

As usual, it's best to divide the program into functions that match this natural 
division, with the main routine controlling the other functions. Let us defer the 
sorting step for a moment, and concentrate on the data structure and the input 
and output. 

The input routine has to collect and save the characters of each line, and 
build an array of pointers to the lines. It will also have to count the number of 
input lines, since that information is needed for sorting and printing. Since the 
input function can only cope with a finite number of input lines, it can return 
some illegal line count like -1 if too much input is presented. 

The output routine only has to print the lines in the order in which they 
appear in the array of pointers. 

#include <stdio.h> 
#include <string.h> 

#define MAXLINES 5000 

char *lineptr[MAXLINES]; 

/* max #lines to be sorted */ 

I* pointers to text lines */ 

int readlines(char *lineptr[], int nlines); 
void writelines(char *lineptr[], int nlines); 

void qsort(char *lineptr[], int left, int right); 

/* sort input lines */ 
main() 
{ 

} 

int nlines; I* number of input lines read */ 

if ((nlines = readlines(lineptr, MAXLINES)) >• 0) { 
qsort(lineptr, 0, nlines-1); 
writelines(lineptr, nlines); 
return 0; 

} else { 

} 

printf("error: input too big to sort\n"); 
return 1; 



SECTION 5.6 POINTER ARRAYS; POINTERS TO POINTERS 109 

#define MAXLEN 1000 I• max length of any input line •I 
int getline(char *• int); 
char •alloc(int); 

I• readlines: read input lines •I 
int readlines(char •lineptr[l. int maxlines) 
{ 

} 

int len. nlines; 
char *Pt line[MAXLEN]; 

nlines = 0; 
while ((len= qetline(line. MAXLEN)) > 0) 

if (nlines >= maxlines :: (p = alloc(len)) --NULL) 
return -1; 

else { 

} 

line[len-1] = '\0'; I• delete newline •I 
strcpy ( p. line ) ; 
lineptr[nlines++] = p; 

return nlines; 

I• writelines: write output lines •I 
void writelines(char •lineptr[]. int nlines) 
{ 

} 

int i; 

for (i = 0; i < nlines; i++) 
printf( ""s\n" • lineptr[i]); 

The function getline is from Section 1.9. 
The main new thing is the declaration for lineptr: 

char •lineptr[MAXLINES] 

says that lineptr is an array of MAXLINES elements, each element of which 
is a pointer to a char. That is, lineptr [ i] is a character pointer, and 
*lineptr [ i] is the character it points to, the first character of the i-th saved 
te:lt line. 

Since lineptr is itself the name of an array, it can be treated as a pointer 
in the same manner as in our earlier examples, and wri telines can be writ-
ten instead as 

I• writelines: write output lines •I 
void writelines(char •lineptr[], int nlines) 
{ 

while (nlines-- > 0) 
printf ( ""s\n", •lineptr++); 

} 



110 POINTERS AND ARRAYS CHAPTERS 

Initially *lineptr points to the first line; each increment advances it to the 
next line pointer while nlines is counted down. 

With input and output under control, we can proceed to sorting. The quick-
sort from Chapter 4 needs minor changes: the declarations have to be modified, 
and the comparison operation must be done by calling strcmp. The algorithm 
remains the same, which gives us some confidence that it will still work. 

I* qsort: sort v[left] ... v[right] into increasing order*/ 
void qsort(char *V[], int left, int right) 
{ 

} 

int i, last; 
void swap(char *V[], inti, int j); 

if (left >= right) 
return; 

swap(v, left, (left + 
last = left; 

/* do nothing if array contains */ 
I* fewer than two elements */ 
right)/2); 

for (i = i <= right; i++) 
if (strcmp(v[i], v[left]) < 0) 

swap(v, ++last, i); 
swap(v, left, last); 
qsort(v, left, last-1); 
qsort(v, last+1, right); 

Similarly, the swap routine needs only trivial changes: 
/* swap: interchange v[i] and v[j] */ 
void swap(char *V[], inti, int j) 
{ 

} 

char *temp; 

temp= v[i]; 
v[i] = v[j]; 
v[j] = temp; 

Since any individual element of v (alias lineptr) is a character pointer, temp 
must be also, so one can be copied to the other. 

Exercise 5-7. Rewrite readlines to store lines in an array supplied by main, 
rather than calling alloc to maintain storage. How much faster is the pro-
gram? D 

5. 7 Multi-dimensional Arrays 
C provides rectangular multi-dimensional arrays, although in practice they 

are much less used than arrays of pointers. In this section, we will show some 
of their properties. 



SECTION 5.7 MULTI-DIMENSIONAL ARRAYS Ill 

Consider the problem of date conversion, from day of the month to day of 
the year and vice versa. For example, March 1 is the 60th day of a non-leap 
year, and the 61st day of a leap year. Let us define two functions to do the 
conversions: day_of_year converts the month and day into the day of the 
year, and month_day converts the day of the year into the month and day. 
Since this latter function computes two values, the month and day arguments 
will be pointers: 

month_day(1988, 60, &m, &d) 

sets m to 2 and d to 29 (February 29th). 
These functions both need the same information, a table of the number of 

days in each month ("thirty days hath September ... "). Since the number of 
days per month differs for leap years and non-leap years, it's easier to separate 
them into two rows of a two-dimensional array than to keep track of what hap-
pens to February during computation. The array and the functions for perform-
ing the transformations are as follows: 

static char daytab[2][13] = { 

} ; 

{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, 
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} 

/* day_of_year: set day of year from month & day */ 
int day_of_year(int year, int month, int day) 
{ 

} 

int i, leap; 

leap = year%4 == 0 && year%100 I= 0 :: year%400 == 0; 
for (i = 1; i < month; i++) 

day += daytab[leap][i]; 
return day; 

/* month_day: set month, day from day of year */ 
void month_day(int year, int yearday, int *pmonth, int *Pday) 
{ 

} 

int i, leap; 

leap = year%4 == 0 && year%100 I= 0 :: year%400 -- 0; 
for (i = 1; yearday > daytab[leap][i]; i++) 

yearday -= daytab[leap][i]; 
*pmonth = i; 
*Pday = yearday; 

Recall that the arithmetic value of a logical expression, such as the one for 
leap, is either zero (false) or one (true), so it can be used as a subscript of the 
array daytab. 

The array daytab has to be external to both day_ of _year and 



112 POINTERS AND ARRAYS CHAPTER 5 

month_day, so they can both use it. We made it char to illustrate a legiti-
mate use of char for storing small non-character integers. 

daytab is the first two-dimensional array we have dealt with. In C, a two-
dimensional array is really a one-dimensional array, each of whose elements is 
an array. Hence subscripts are written as 

daytab[i)[j] 

rather than 
daytab[i,j] 

/* [row][col] */ 

Other than this notational distinction, a two-dimensional array can be treated in 
much the same way as in other languages. Elements are stored by rows, so the 
rightmost subscript, or column, varies fastest as elements are accessed in storage 
order. 

An array is initialized by a list of initializers in braces; each row of a two-
dimensional array is initialized by a corresponding sub-list. We started the 
array daytab with a column of zero so that month numbers can run from the 
natural 1 to 12 instead of 0 to 11. Since space is not at a premium here, this is 
clearer than adjusting the indices. 

If a two-dimensional array is to be passed to a function, the parameter 
declaration in the function must include the number of columns; the number of 
rows is irrelevant, since what is passed is, as before, a pointer to an array of 
rows, where each row is an array of 13 ints. In this particular case, it is a 
pointer to objects that are arrays of 13 ints. Thus if the array daytab is to 
be passed to a function f, the declaration off would be 

f(int daytab[2][ 13]) { ... } 

It could also be 
f ( int daytab [ ] [ 13] ) { .. . } 

since the number of rows is irrelevant, or it could be 
f ( int ( *daytab )[ 13 ] ) { .. . } 

which says that the parameter is a pointer to an array of 13 integers. The 
parentheses are necessary since brackets [] have higher precedence than *· 
Without parentheses, the declaration 

int *daytab[13] 

is an array of 13 pointers to integers. More generally, only the first dimension 
(subscript) of an array is free; all the others have to be specified. 

Section 5.12 has a further discussion of complicated declarations. 

Exercise 5·8. There is no error checking in day_ of _year or month_ day. 
Remedy this defect. D 



SECTION 5.9 POINTERS VS. MULTI-DIMENSIONAL ARRAYS 113 

5.8 Initialization of Pointer Arrays 
Consider the problem of writing a function month_name ( n), which returns 

a pointer to a character string containing the name of the n-th month. This is 
an ideal application for an internal static array. month_name contains a 
private array of character strings, and returns a pointer to the proper one when 
called. This section shows how that array of names is initialized. 

The syntax is similar to previous initializations: 
/* month_name: return name of n-th month */ 
char *month_name(int n) 
{ 

} 

static char *name(] = { 
"Illegal month", 

} ; 

"January", "February", "March", 
"April", "May", "June", 
"July", "August", "September", 
"October", "November", "December" 

return ( n < 1 l l n > 12 ) _? name ( 0 ] : name ( n] ; 

The declaration of name, which is an array of character pointers, is the same as 
1 ineptr in the sorting example. The initializer is a list of character strings; 
each is assigned to the corresponding position in the array. The characters of 
the i-th string are placed somewhere, and a pointer to them is stored in 
name [ i ] . Since the size of the array name is not specified, the compiler 
counts the initializers and fills in the correct number. 

5.9 Pointers vs. Multi-dimensional Arrays 
Newcomers to C are sometimes confused about the difference between a 

two-dimensional array and an array of pointers, such as name in the example 
above. Given the definitions 

int a( 10] (20]; 
int *b(10]; 

then a [ 3 ] [ 4] and b [ 3 ] [ 4] are both syntactically legal references to a single 
int. But a is a true two-dimensional array: 200 int-sized locations have been 
set aside, and the conventional rectangular subscript calculation 20Xrow+col is 
used to find the element al[row] [co/]. Forb, however, the definition only allo-
cates 10 pointers and does not initialize them; initialization must be done expli-
citly, either statically or with code. Assuming that each element of b does point 
to a twenty-element array, then there will be 200 ints set aside, plus ten cells 
for the pointers. The important advantage of the pointer array is that the rows 
of the array may be of different lengths. That is, each element of b need not 



114 POINTERS AND ARRAYS CHAPTER 5 

point to a twenty-element vector; some may point to two elements, some to fifty, 
and some to none at all. 

Although we have phrased this discussion in terms of integers, by far the 
most frequent use of arrays of pointers is to store character strings of diverse 
lengths, as in the function month_name. Compare the declaration and picture 
for an array of pointers: 

char *name[] = { "Illegal month", "Jan, "Feb", "Mar" } ; 

name: 
.------ Illegal month\ol 

Jan,ol 
Feb,ol 
Mar\o I 

with those for a two-dimensional array: 
char aname[][15] = { "Illegal month", "Jan", "Feb", "Mar" }; 

aname: 
!Illegal month\o Jan\o Feb\o Mar\o 
0 15 30 45 

Exercise 5-9. Rewrite the routines day_of_year and month_ day with 
pointers instead of indexing. 0 

5.10 Command-line Arguments 
In environments that support C, there is a way to pass command-line argu-

ments or parameters to a program when it begins executing. When main is 
called, it is called with two arguments. The first (conventionally called argc, 
for argument count) is the number of command-line arguments the program 
was invoked with; the second (argv, for argument vector) is a pointer to an 
array of character strings that contain the arguments, one per string. We cus-
tomarily use multiple levels of pointers to manipulate these character strings. 

The simplest illustration is the program echo, which echoes its command-
line arguments on a single line, separated by blanks. That is, the command 

echo hello, world 

prints the output 
hello, world 



SECTION 5.10 COMMAND-LINE ARGUMENTS 115 

By convention, argv[ 0] is the name by which the program was invoked, so 
argc is at least 1. If argc is l, there are no command-line arguments after 
the program name. In the example above, argc is 3, and argv[ 0 ], argv[ 1 ], 
and argv[2] are "echo", "hello,", and "world" respectively. The first 
optional argument is argv[ 1] and the last is argv[argc-1 ]; additionally, 
the standard requires that argv[argc] be a null pointer. 

echo\ a 

world\o 
0 

The first version of echo treats argv as an array of character pointers: 
#include <stdio.h> 

/* echo command-line arguments; 1st version */ 
main(int argc, char *argv[]) 
{ 

int i; 

for (i = 1; i < argc; i++) 
print£( "%s%s 11 , argv[i], (i < argc-1) ? 11 11 1111 ); 

print£( 11 'n11 ); 

return 0; 
} 

Since argv is a pointer to an array of pointers, we can manipulate the pointer 
rather than index the array. This next variation is based on incrementing argv, 
which is a pointer to pointer to char, while argc is counted down: 

#include <stdio.h> 

I* echo command-line arguments; 2nd version */ 
main(int argc, char *argv[]) 
{ 

while (--argc > 0) 
print£ ( 11 %s%s 11 , *++argv, ( argc > 1) ? 11 11 1111 ) ; 

print£ ( 11 'n 11 ) ; 

return 0; 
} 

Since argv is a pointer to the beginning of the array of argument strings, incre-
menting it by 1 ( + +argv) makes it point at the original argv [ 1 ] instead of 
argv [ 0 ] . Each successive increment moves it along to the next argument; 
*argv is then the pointer to that argument. At the same time, argc is decre-
mented; when it becomes zero, there are no arguments left to print. 

Alternatively, we could write the printf statement as 



116 POINTERS AND ARRAYS CHAPTERS 

printf((argc > 1)? 11"s 11 : 11 "8 11 , *++argv); 
This shows that the format argument of printf can be an expression too. 

As a second example, let us make some enhancements to the pattern-finding 
program from Section 4.1. If you recall, we wired the search pattern deep into 
the program, an obviously unsatisfactory arrangement. Following the lead of 
the UNIX program grep, let us change the program so the pattern to be 
matched is specified by the first argument on the command line. 

#include <stdio.h> 
#include <string.h> 
#define MAXLINE 1000 

int getline(char *line, int max); 

I* find: print lines that match pattern from 1st arg */ 
main(int argc, char *argv[]) 
{ 

} 

char line[MAXLINE]; 
int found = 0; 

if (argc I= 2) 
printf( 11 Usage: find pattern\n 11 ); 

else 
while (getline(line, MAXLINE) > 0) 

if (strstr(line, argv[1)) I= NULL) { 
print£ ( 11 "s 11 , l,ine) ; 
found++; 

} 
return found; 

The standard library function strstr ( s , t) returns a pointer to the first 
occurrence of the string t in the string s, or NULL if there is none. It is 
declared in <string. h>. 

The model can now be elaborated to illustrate further pointer constructions. 
Suppose we want to allow two optional arguments. One says "print all lines 
except those that match the pattern;" the second says "precede each printed line 
by its line number." 

A common convention for C programs on UNIX systems is that an argument 
that begins with a minus sign introduces an optional flag or parameter. If we 
choose -x (for "except") to signal the inversion, and -n ("number") to request 
line numbering, then the command 

find -x -n pattern 
will print each line that doesn't match the pattern, preceded by its line number. 

Optional arguments should be permitted in any order, and the rest of the 
program should be independent of the number of arguments that were present. 
Furthermore, it is convenient for users if option arguments can be combined, as 



SECTION 5.10 COMMAND-LINE ARGUMENTS 117 

in 
find -nx pattern 

Here is the program: 
#include <stdio.h> 
#include <string.h> 
#define MAXLINE 1000 

int getline(char *line, int max); 

/* find: print lines that match pattern from 1st arg */ 
main(int argc, char *argv[]) 
{ 

} 

char line[MAXLINE]; 
long lineno = 0; 
int c, except = 0, number = 0, found = 0; 

while (--argc > 0 && (*++argv)[O] == '-') 
while (c = *++argv[O]) 

switch (c) { 
case 'x, : 

except = 1 . 
' break; 

case 'n, : 
number = 1. 

' break; 
default: 

} 

printf("find: illegal option "c\n 11 , c); 
argc = 0; 
found = -1; 
break; 

if ( argc I = 1 ) 
printf("Usage: find -x -n pattern\n"); 

else 
while (getline(line, MAXLINE) > 0) { 

lineno++; 

} 

if ((strstr(line, *argv) I= NULL) I= except) { 
if (number) 

} 

print£ ( 11"ld: 11 , lineno) ; 
print£ ( ""s 11 , line) ; 
found++; 

return found; 

argc is decremented and argv is incremented before each optional argu-
ment. At the end of the loop, if there are no errors, argc tells how many argu-
ments remain unprocessed and argv points to the first of these. Thus argc 



118 POINTERS AND ARRAYS CHAPTER 5 

should be 1 and *argv should point at the pattern. Notice that *++argv is a 
pointer to an argument string, so ( *++argv) [ 0] is its first character. (An 
alternate valid form would be **++argv.) Because [] binds tighter than * 
and ++, the parentheses are necessary; without them the expression would be 
taken as *++ ( argv[ 0]). In fact, that is what we used in the inner loop, 
where the task is to walk along a specific argument string. In the inner loop, 
the expression *++argv[ 0] increments the pointer argv[ 0 ]! 

It is rare that one uses pointer· expressions more complicated than these; in 
such cases, breaking them into two or three steps will be more intuitive. 

Exercise 5-10. Write the program expr, which evaluates a reverse Polish 
expression from the command line, where each operator or operand is a separate 
argument. For example, 

2 3 4 + * 
evaluates 2 x (3+4). D 

Exercise 5-11. Modify the programs entab and detab (written as exercises in 
Chapter 1) to accept a list of tab stops as arguments. Use the default tab set-
tings if there are no arguments. D 

Exercise 5-12. Extend entab and detab to accept the shorthand 
entab -m +n 

to mean tab stops every n columns, starting at column m. Choose convenient 
(for the user) default behavior. D 

Exercise 5-13. Write the program tail, which prints the last n lines of its 
input. By default, n is 10, let us say, but it can be changed by an optional 
argument, so that 

tail -n 
prints the last n lines. The program should behave rationally no matter how 
unreasonable the input or the value of n. Write the program so it makes the 
best use of available storage; lines should be stored as in the sorting program of 
Section 5.6, not in a two-dimensional array of fixed size. D 

5.11 Pointers to Functions 
In C, a function itself is not a variable, but it is possible to define pointers to 

functions, which can be assigned, placed in arrays, passed to functions, returned 
by functions, and so on. We will illustrate this by modifying the sorting pro-
cedure written earlier in this chapter so that if the optional argument -n is 
given, it will sort the input lines numerically instead of lexicographically. 

A sort often consists of three parts-a comparison that determines the 



SECTION 5.11 POINTERS TO FUNCTIONS 119 

ordering of any pair of objects, an exchange that reverses their order, and a 
sorting algorithm that makes comparisons and exchanges until the objects are in 
order. The sorting algorithm is independent of the comparison and exchange 
operations, so by passing different comparison and exchange functions to it, we 
can arrange to sort by different criteria. This is the approach taken in our new 
sort. 

Lexicographic comparison of two lines is done by strcmp, as before; we will 
also need a routine numcmp that compares two lines on the basis of numeric 
value and returns the same kind of condition indication as strcmp does. These 
functions are declared ahead of main and a pointer to the appropriate one is 
passed to qsort. We have skimped on error processing for arguments, so as to 
concentrate on the main issues. 

#include <stdio.h> 
#include <string.h> 

#define MAXLINES 5000 /* max #lines to be sorted */ 
char *lineptr[MAXLINES]; /*pointers to text lines */ 

int readlines(char *lineptr[], int nlines); 
void writelines(char *lineptr[], int nlines); 

void qsort(void *lineptr[], int left, int right, 
int (*comp)(void *• void*)); 

int numcmp(char *• char*); 

/* sort input lines */ 
main(int argc, char *arqv[]) 
{ 

} 

int nlines; I* number of input lines read */ 
I* 1 if numeric sort */ int numeric = 0; 

if (argc > 1 &.&. strcmp(arqv[1], "-n") == 0) 
numeric = 1; 

if ((nlines = readlines(lineptr, MAXLINES)) >= 0) { 
qsort((void **) lineptr, 0, nlines-1, 

(int (*)(void*,void*))(numeric ? numcmp : strcmp)); 
writelines(lineptr, nlines); 
return 0; 

} else { 

} 

printf ( "input too big to sort\n" ) ; 
return 1; 

In the call to qsort, strcmp and numcmp are addresses of functions. Since 
they are known to be functions, the &. operator is not necessary, in the same way 
that it is not needed before an array name. 

We have written qsort so it can process any data type, not just character 



120 POINTERS AND ARRAYS CHAPTER 5 

strings. As indicated by the function prototype, qsort expects an array of 
pointers, two integers, and a function with two pointer arguments. The generic 
pointer type void *is used for the pointer arguments. Any pointer can be cast 
to void * and back again without loss of information, so we can call qsort by 
casting arguments to void *· The elaborate cast of the function argument 
casts the arguments of the comparison function. These will generally have no 
effect on actual representation, but assure the compiler that all is well. 

/* qsort: sort v[left] •.. v[right] into increasing order*/ 
void qsort(void *V[], int left, int right, 

{ 

} 

int (*comp)(void *• void*)) 

int i, last; 
void swap(void *V[], int, int); 

if (left >= right) 
return; 

swap(v, left, (left + 
last = left; 

/* do nothing if array contains */ 
/* fewer than two elements */ 
right)/2); 

for (i = left+1; i <= right; i++) 
if ((*comp)(v[i], v[left]) < 0) 

swap(v, ++last, i); 
swap(v, left, last); 
qsort(v, left, last-1, comp); 
qsort(v, last+1, right, comp); 

The declarations should be studied with some care. The fourth parameter of 
qsort is 

int (*comp)(void *• void*) 

which says that comp is a pointer to a function that has two void *arguments 
and returns an int. 

The use of comp in the line 
if ((*comp)(v(i], v[left]) < 0) 

is consistent with the declaration: comp is a pointer to a function, *comp is the 
function, and 

(*COmp)(v[i], v[left]) 

is the call to it. The parentheses are needed so the components are correctly 
associated; without them, 

int *COmp(void *• void *) I* WRONG */ 

says that comp is a function returning a pointer to an int, which is very dif-
ferent. 

We have already shown strcmp, which compares two strings. Here is 
numcmp, which compares two strings on a leading numeric value, computed by 



SECTION 5.11 POINTERS TO FUNCTIONS 121 

calling atof: 
#include <stdlib.h> 

I* numcmp: compare s1 and s2 numerically */ 
int numcmp(char *S1, char *S2) 
{ 

double v1, v2; 

v1 = atof(s1); 
v2 = atof( s2); 
if (v1 < v2) 

return -1; 
else if (v1 > v2) 

return 1 . 
' else 

return 0; 
} 

The swap function, which exchanges two pointers, is identical to what we 
presented earlier in the chapter, except that the declarations are changed to 
void*· 

void swap(void *V[], int i, int j) 
{ 

} 

void *temp; 

temp = v[i]; 
v[i] = v[j]; 
v[j] = temp; 

A variety of other options can be added to the sorting program; some make 
challenging exercises. 

Exercise 5-14. Modify the sort program to handle a -r flag, which indicates 
sorting in reverse (decreasing) order. Be sure that -r works with -n. o 
Exercise 5-15. Add the option -f to fold upper and lower case together, so that 
case distinctions are not made during sorting; for example, a and A compare 
equal. o 
Exercise 5-16. Add the -d ("directory order") option, which makes comparis-
ons only on letters, numbers and blanks. Make sure it works in conjunction 
with -f. 0 

Exercise 5-17. Add a field-handling capability, so sorting may be done on fields 
within lines, each field sorted according to an independent set of options. (The 
index for this book was sorted with -df for the index category and -n for the 
page numbers.) o 



122 POINTERS AND ARRAYS CHAPTER 5 

5. 12 Complicated Declarations 
C is sometimes castigated for the syntax of its declarations, particularly ones 

that involve pointers to functions. The syntax is an attempt to make the 
declaration and the use agree; it works well for simple cases, but it can be 
confusing for the harder ones, because declarations cannot be read left to right, 
and because parentheses are over-used. The difference between 

int *f(); /* f: function returning pointer to int */ 

and 
int ( *Pf ) ( ) ; /* pf: pointer to function returning int */ 

illustrates the problem: * is a prefix operator and it has lower precedence than 
( ) , so parentheses are necessary to force the proper association. 

Although truly complicated declarations rarely arise in practice, it is impor-
tant to know how to understand them, and, if necessary, how to create them. 
One good way to synthesize declarations is in small steps with typedef, which 
is discussed in Section 6. 7. As an alternative, in this section we will present a 
pair of programs that convert from valid C to a word description and back 
again. The word description reads left to right. 

The first, del, is the more complex. It converts a C declaration into a word 
description, as in these examples: 

char **argv 
argv: pointer to pointer to char 

int (*daytab)[13] 
daytab: pointer to array[13] of int 

int *daytab[13] 
daytab: array[13] of pointer to int 

void *COmp ( ) 
comp: function returning pointer to void 

void (*comp)() 
comp: pointer to function returning void 

char ( * (*X ( ) ) [ ] ) ( ) 
x: function returning pointer to array[] of 
pointer to function returning char 

char (*(*X[3])())[5] 
x: array[3] of pointer to function returning 
pointer to array[S] of char 

del is based on the grammar that specifies a declarator, which is spelled out 
precisely in Appendix A, Section 8.5; this is a simplified form: 

del: optional *'s direct-de/ 
direct -del: name 

(del) 
direct -del ( ) 
direct -del [optional size 1 

In words, a del is a direct-de/, perhaps preceded by *'s. A direct-de/ is a 



SECTION 5.12 COMPLICATED DECLARATIONS 123 

name, or a parenthesized del, or a direct-de/ followed by parentheses, or a 
direct-de/ followed by brackets with an optional size. 

This grammar can be used to parse declarations. For instance, consider this 
declarator: 

(*pfa[))() 

pf a will be identified as a name and thus as a direct -del. Then pf a [ ] is also 
a direct -del. Then *Pf a [ ] is a recognized as a del, so ( *Pf a [ ] ) is a direct-
del. Then ( *Pfa[]) () is a direct-icl and thus a del. We can also illustrate 
the parse with a parse tree like this (where direct-de/ has been abbreviated to 
dir-dc/): . 

* pfa [ ] ( ) 

I 
name 

I 
dir-del 

I 
I 

del 

I 
dir-del 

I 
dir-del 

I 
del 

The heart of the del program is a pair of functions, del and dirdel, that 
parse a declaration according to this grammar. Because the grammar is recur-
sively defined, the functions call each other recursively as they recognize pieces 
of a declaration; the program is called a recursive-descent parser. 

/* del: parse a declarator */ 
void dcl(void) 
{ 

} 

int ns; 

for (ns = 0; gettoken() == '*'; 
ns++; 

dirdcl(); 
while (ns-- > 0) 

strcat(out, " pointer to"); 

I* count *'s */ 



124 POINTERS AND ARRAYS 

I• dirdcl: parse a direct declarator •I 
void dirdcl(void) 
{ 

int type; 

if (tokentype == '(') { 
del (); 

I• ( del ) •I 

)\n"); 

CHAPTERS 

if (tokentype I= ')') 
printf("error: missing 

} else if (tokentype == NAME) 
strcpy(name, token); 

I• variable name •I 

else 
printf("error: expected name or (dcl)\n"); 

while ((type=gettoken()) ==PARENS I I type== BRACKETS) 
if (type == PARENS) 

} 

strcat(out, "function returning"); 
else { 

} 

strcat(out, "array"); 
strcat(out, token); 
strcat(out, " of"); 

Since the programs are intended to be illustrative, not bullet-proof, there are 
significant restrictions on del. It can only handle a simple data type like char 
or int. It does not handle argument types in functions, or qualifiers like 
const. Spurious blanks confuse it. It doesn't do much error recovery, so 
invalid declarations will also confuse it. These improvements are left as exer-
cises. 

Here are the global variables and the main routine: 

#include <stdio.h> 
#include <string.h> 
#include <ctype.h> 

#define MAXTOKEN 100 

enum { NAME, PARENS, BRACKETS 

void dcl(void); 
void dirdcl(void); 

int gettoken(void); 
int tokentype; I• 
char token [ MAXTOKEN] ; I• 
char name [ MAXTOKEN] ; I• 
char datatype[MAXTOKEN]; I• 
char out[ 1000]; I• 

} ; 

type of last token •I 
last token string •I 
identifier name •I 
data type = char, int, 
output string •I 

etc. •I 



SECTION 5.12 COMPLICATED DECLARATIONS 125 

main() /*convert declaration to words*/ 
{ 

} 

while (gettoken() I= EOF) { /*1st token on line*/ 
strcpy(datatype, token); /*is the datatype */ 
out[O] = '\.0'; 
del(); /*parse rest of line*/ 
if (tokentype I= '\.n') 

printf("syntax error\.n"); 
printf ( ""s: "s "s\.n", name, out, data type) ; 

} 
return 0; 

The function gettoken skips blanks and tabs, then finds the next token in 
the input; a "token" is a name, a pair of parentheses, a pair of brackets perhaps 
including a number, or any other single character. 

int gettoken(void) /* return next token */ 
{ 

} 

int c, getch(void); 
void ungetch(int); 
char *P = token; 

while ( ( c = getch()) == ' ' II c == '\.t') 

if ( c == , ( , ) { 
if ((c = getch()) == ')') { 

strcpy(token, "()"); 
return tokentype = PARENS; 

} else { 
ungetch ( c ) ; 
return tokentype = '('; 

} 
} else if (c == '[') { 

for (*p++ = c; <*P++ = getch()) I= ']'; ) 
; 

*P = '\.0'; 
return tokentype = BRACKETS; 

} else if (isalpha(c)) { 
for (*P++ = c; isalnum(c = getch()); 

*P++ = c; 
*P = '\.0'; 
ungetch ( c ) ; 
return tokentype = NAME; 

} else 
return tokentype = c; 

getch and ungetch were discussed in Chapter 4. 
Going in the other direction is easier, especially if we do not worry about 

generating redundant parentheses. The program undcl converts a word 



126 POINTERS ANP ARRAYS CHAPTERS 

description like "x is a function returning a pointer to an array of pointers to 
functions returning char," which we will express as 

x () * [] * ()char 

to 
char (*(*x())[])() 

The abbreviated input syntax lets us reuse the gettoken function. undcl also 
uses the same external variables as del does. 

I* undcl: convert word description to declaration */ 
main() 
{ 

} 

. int type; 
char temp[MAXTOKEN]; 

while (gettoken{) I= EOF) { 
strcpy(out, token); 

} 

while ((type= gettoken()) I= '\n') 
if (type == PARENS I I type == BRACKETS) 

strcat(out, token); 
else if (type== '*') { 

sprintf(temp, "(*%s)", out); 
strcpy(out, temp); 

} else if (type == NAME) { 
sprintf(temp, "%s %s", token, out); 
strcpy(out, temp); 

} else 
printf("invalid input at %s\n", token); 

printf("%s\n", out); 

return 0; 

Exercise 5-18. Make del recover from input errors. 0 

Exercise 5-19. Modify undcl so that it does not add redundant parentheses to 
declarations. o 
Exercise 5-20. Expand del to handle declarations with function argument 
types, qualifiers like const, and so on. 0 



cHAPTER a: Structures 

A structure is a collection of one or more variables, possibly of different 
types, grouped together under a single name for convenient handling. (Struc-
tures are called "records" in some languages, notably Pascal.) Structures help 
to organize complicated data, particularly in large programs, because they per-
mit a group of related variables to be treated as a unit instead of as separate 
entities. 

One traditional example of a structure is the payroll record: an employee is 
described by a set of attributes such as name, address, social security number, 
salary, etc. Some of these in turn could be structures: a name has several com-
ponents, as does an address and even a salary. Another example, more typical 
for C, comes from graphics: a point is a pair of coordinates, a rectangle is a pair 
of points, and so on. 

The main change made by the ANSI standard is to define structure 
assignment-structures may be copied and assigned to, passed to functions, and 
returned by functions. This has been supported by most compilers for many 
years, but the properties are now precisely defined. Automatic structures and 
arrays may now also be initialized. 

6. 1 Basics of Structures 
Let us create a few structures suitable for graphics. The basic object is a 

point, which we will assume has an x coordinate and a y coordinate, both 
integers. 

y 

• (4,3) 

X 
(0,0) 

127 



118 STRUCTURES 

The two components can be placed in a structure declared like this: 
struct point { 

int x; 
int y; 

} ; 

CHAPTER 6 

The keyword struct introduces a structure declaration, which is a list of 
declarations enclosed in braces. An optional name called a structure tag may 
follow the word struct (as with point here). The tag names this kind of 
structure, and can be used subsequently as a shorthand for the part of the 
declaration in braces. 

The variables named in a structure are called members. A structure 
member or tag and an ordinary (i.e., non-member) variable can have the same 
name without conflict, since they can always be distinguished by context. 
Furthermore, the same member names may occur in different structures, 
although as a matter of style one would normally use the same names only for 
closely related objects. 

A struct declaration defines a type. The right brace that terminates the 
list of members may be followed by a list of variables, just as for any basic type. 
That is, 

struct { . . . } x, y, z ; 

is syntactically analogous to 
int x, y, z; 

in the sense that each statement declares x, y and z to be variables of the 
named type and causes space to be set aside for them. 

A structure declaration that is not followed by a list of variables reserves no 
storage; it merely describes a template or the shape of a structure. If the 
declaration is tagged, however, the tag can be used later in definitions of 
instances of the structure. For example, given the declaration of point above, 

struct point pt; 

defines a variable pt which is a structure of type struct point. A structure 
can be initialized by following its definition with a list of initializers, each a con-
stant expression, for the members: 

struct point maxpt = { 320, 200 }; 

An automatic structure may also be initialized by assignment or by calling a 
function that returns a structure of the right type. 

A member of a particular structure is referred to in an expression by a con-
struction of the form 

structure-name • member 

The structure member operator " • " connects the structure name and the 
member name. To print the coordinates of the point pt, for instance, 



SECTION 6.2 STRUCTURES AND FUNCTIONS 129 

printf( "%d,%d", pt.x, pt.y); 

or to compute the distance from the origin (0,0) to pt, 

double dist, sqrt(double); 

dist = sqrt((double)pt.x * pt.x + (double)pt.y * pt.y); 

Structures can be nested. One representation of a rectangle is a pair of 
points that denote the diagonally opposite corners: 

struct rect { 

} ; 

struct point pt1; 
struct point pt2; 

y Dpt2 
pt1 

X 

The rect structure contains two point structures. If we declare screen as 
struct rect screen; 

then 
screen.pt1.x 

refers to the x coordinate of the pt 1 member of screen. 

6.2 Structures and Functions 
The only legal operations on a structure are copying it or assigning to it as a 

unit, taking its address with &., and accessing its members. Copy and assign-
ment include passing arguments to functions and returning values from func-
tions as well. Structures may not be compared. A structure may be initialized 
by a list of constant member values; an automatic structure may also be initial-
ized by an assignment. 

Let us investigate structures by writing some functions to manipulate points 
and rectangles. There are at least three possible approaches: pass components 
separately, pass an entire structure, or pass a pointer to it. Each has its good 
points and bad points. 

The first function, makepoint, will take two integers and return a point 
structure: 



130 STRUCTURES CHAPTER 6 

/* makepoint: make a point from x and y components */ 
struct point makepoint(int x, int y) 
{ 

} 

struct point temp; 

temp.x = x; 
temp.y = y; 
return temp; 

Notice that there is no conflict between the argument name and the member 
with the same name; indeed the re-use of the names stresses the relationship. 

makepoint can now be used to initialize any structure dynamically, or to 
provide structure arguments to a function: 

struct rect screen; 
struct point middle; 
struct point makepoint(int, int); 

screen.pt1 = makepoint(O, 0); 
screen.pt2 = makepoint(XMAX, YMAX); 
middle= makepoint((screen.pt1.x + screen.pt2.x)/2, 

(screen.pt1.y + screen.pt2.y)/2); 

The next step is a set of functions to do arithmetic on points. For instance, 
/* addpoint: add two points */ 
struct point addpoint(struct point p1, struct point p2) 
{ 

} 

p 1 , X + = p2, X; 
p1.y += p2.y; 
return p1; 

Here both the arguments and the return value are structures. We incremented 
the components in p 1 rather than using an explicit temporary variable to 
emphasize that structure parameters are passed by value like any others. 

As another example, the function ptinrect tests whether a point is inside 
a rectangle, where we have adopted the convention that a rectangle includes its 
left and bottom sides but not its top and right sides: 

/* ptinrect: return 1 if p in r, 0 if not */ 
int ptinrect(struct point p, struct rect r) 
{ 

} 

return p.x >= r.pt1.x && p.x < r.pt2.x 
&& p.y >= r.pt1.y && p.y < r.pt2.y; 

This assumes that the rectangle is represented in a standard form where the 
pt 1 coordinates are less than the pt2 coordinates. The following function. 
returns a rectangle guaranteed to be in canonical form: 



SECTION 6.2 STRUCTURES AND FUNCTIONS 131 

#define min(a, b) ((a) < (b) ? (a) (b)) 
#define max(a, b) ((a) > (b) ? (a) (b)) 

/* canonrect: canonicalize coordinates of rectangle */ 
struct rect canonrect(struct rect r) 
{ 

} 

struct rect temp; 

temp.pt1.x = min(r.pt1.x, r.pt2.x); 
temp.pt1.y = min(r.pt1.y, r.pt2.y); 
temp.pt2.x = max(r.pt1.x, r.pt2.x); 
temp.pt2.y = max(r.pt1.y, r.pt2.y); 
return temp; 

If a large structure is to be passed to a function, it is generally more efficient 
to pass a pointer than to copy the whole structure. Structure pointers are just 
like pointers to ordinary variables. The declaration 

struct point *pp; 

says that pp is a pointer to a structure of type struct point. If pp points to 
a point structure, *PP is the structure, and ( *PP) . x and ( *PP) • y are the 
members. To use pp, we might write, for example, 

struct point origin, *PP; 

pp = &.origin; 
printf("origin is (%d,%d)\n", (*pp).x, (*pp).y); 

The parentheses are necessary in ( *PP) • x because the precedence of the struc-
ture member operator . is higher than *. The expression *PP. x means 
* ( pp. x) , which is illegal here because x is not a pointer. 

Pointers to structures are so frequently used that an alternative notation is 
provided as a shorthand. If p is a pointer to a structure, then 

p->member-of-structure 

refers to the particular member. (The operator - > is a minus sign immediately 
followed by > .) So we could write instead 

printf("origin is (%d,%d)\n", pp->x, pp->y); 

Both • and -> associate from left to right, so if we have 
struct rect r, *rp = &.r; 

then these four expressions are equivalent: 
r .pt 1.x 
rp->pt 1. x 
( r. pt 1). x 
(rp->pt1).x 



131 STRUCTURES CHAPTER 6 

The structure operators • and ->, together with ( ) for function calls and [] 
for subscripts, are at the top of the precedence hierarchy and thus bind very 
tightly. For example, given the declaration 

then 

struct { 
int len; 
char •str; 

} •p; 

++p->len 

increments len, not p, because the implied parenthesization is ++(p->len). 
Parentheses can be used to alter the binding: ( ++p) ->len increments p before 
accessing 1 en, and ( p+ + ) - > 1 en increments p afterward. (This last set of 
parentheses is unnecessary.) 

In the same way, •p->str fetches whatever str points to; •p->str++ 
increments str after accessing whatever it points to (just like •s++); 
( •p->str) ++increments whatever str points to; and *P++->str increments 
p after accessing whatever str points to. 

6.3 Arrays of Structures 
Consider writing a program to count the occurrences of each C keyword. 

We need an array of character strings to hold the names, and an array of 
integers for the counts. One possibility is to use two parallel arrays, keyword 
and keycount, as in 

char •keyword[NKEYS]; 
int keycount[NKEYS]; 

But the very fact that the arrays are parallel suggests a different organization, 
an array of structures. Each keyword entry is a pair: 

char •word; 
int count; 

and there is an array of pairs. The structure declaration 
struct key { 

char •word; 
int count; 

} keytab[NKEYS]; 

declares a structure type key, defines an array keytab of structures of this 
type, and sets aside storage for them. Each element of the array is a structure. 
This could also be written 



SECTION 6.3 

struct key { 
char *WOrd; 
int count; 

} ; 

struct key keytab[NKEYS]; 

ARRAYS OF STRUCTURES 133 

Since the structure keytab contains a constant set of names, it is easiest to 
make it an external variable and initialize it once and for all when it is defined. 
The structure initialization is analogous to earlier ones-the definition is fol-
lowed by a list of initializers enclosed in braces: 

struct key { 
char *WOrd; 
int count; 

} keytab[] = { 
"auto", .o, 
"break", 0, 
"case", 0, 
"char", 0, 
"const", 0, 
"continue", 0, 
"default", 0, 
/* •.. */ 
"unsigned", 0, 
"void", 0, 
"volatile", 0, 
"while", 0 

} ; 

The initializers are listed in pairs corresponding to the structure members. It 
would be more precise to enclose initializers for each "row" or structure in 
braces, as in 

{ "auto", 0 }, 
{ "break", 0 }, 
{ "case", 0 }, 

but the inner braces are not necessary when the initializers are simple variables 
or character strings, and when all are present. As usual, the number of entries 
in the array keytab will be computed if initializers are present and the [ ] is 
left empty. 

The keyword-counting program begins with the definition of keytab. The 
main routine reads the input by repeatedly calling a function getword that 
fetches one word at a time. Each word is looked up in keytab with a version 
of the binary search function that we wrote in Chapter 3. The list of keywords 
must be sorted in increasing order in the table. 



134 STRUCTURES 

#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 

#define MAXWORD 100 

int getword(char *' int); 
int binsearch(char *, struct key*' int); 

I* count C keywords */ 
main() 
{ 

int n; 
char word[MAXWORD]; 

while (getword(word, MAXWORD) I= EOF) 
if (isalpha(word[O])) 

CHAPTER6 

if ((n = binsearch(word, keytab, NKEYS)) >= 0) 
keytab[n].count++; 

for (n = 0; n < NKEYS; n++) 
if (keytab[n].count > 0) 

printf( "%4d %s\n", 
keytab[n].count, keytab[n].word); 

return 0; 
} 

I* binsearch: find word in tab[O] •.. tab[n-1] */ 
int binsearch(char *WOrd, struct key tab[], int n) 
{ 

} 

int cond; 
int low, high, mid; 

low = 0; 
high = n - 1; 
while (low <= high) { 

mid = (low+high) I 2; 

} 

if ((cond = strcmp(word, tab[mid].word)) < 0) 
high = mid - 1 ; 

else if (cond > 0) 
low = mid + 1; 

else 
return mid; 

return -1; 

We will show the function qetword in a moment; for now it suffices to say 
that each call to qetword finds a word, which is copied into the array named 
as its first argument. 

The quantity NKEYS is the number of keywords in keytab. Although we 



SECTION 6.3 ARRAYS OF STRUCTURES 135 

could count this by hand, it's a lot easier and safer to do it by machine, espe-
cially if the list is subject to change. One possibility would be to terminate the 
list of initializers with a null pointer, then loop along keytab until the end is 
found. 

But this is more than is needed, since the size of the array is completely 
determined at compile time. The size of the array is the size of one entry times 
the number of entries, so the number of entries is just 

size of keytab I size of struct key 

C provides a compile-time unary operator called sizeof that can be used to 
compute the size of any object. The expressions 

sizeof object 

and 

sizeof (type name) 

yield an integer equal to the size of the specified object or type in bytes. 
(Strictly, sizeof produces an unsigned integer value whose type, size_ t, is 
defined in the header <stddef. h>.) An object can be a variable or array or 
structure. A type name can be the name of a basic type like int or double, 
or a derived type like a structure or a pointer. 

In our case, the number of keywords is the size of the array divided by the 
size of one element. This computation is used in a #define statement to set 
the value of NKEYS: 

#define NKEYS (sizeof keytab I sizeof(struct key)) 

Another way to write this is to divide the array size by the size of a specific ele-
ment: 

#define NKEYS (sizeof keytab I sizeof keytab[O]) 

This has the advantage that it does not need to be changed if the type changes. 
A sizeof can not be used in a #if line, because the preprocessor does not 

parse type names. But the expression in the #define is not evaluated by the 
preprocessor, so the code here is legal. 

Now for the function getword. We have written a more general getword 
than is necessary for this program, but it is not complicated. getword fetches 
the next "word" from the input, where a word is either a string of letters and 
digits beginning with a letter, or a single non-white space character. The func-
tion value is the first character of the word, or EOF for end of file, or the char-
acter itself if it is not alphabetic. 



136 STRUCTURES CHAPTER6 

/* qetword: get next word or character from input */ 
int qetword(char *WOrd, int lim) 
{ 

} 

int c, qetch(void); 
void unqetch(int); 
char *W = word; 

while (isspace(c = qetch())) 

if (c I= EOF) 
*W++ = c; 

if (lisalpha(c)) { 
*W = '\0'; 
return c; 

} 
for ( ; --lim > 0; w++) 

if ( lisalnum(*w = getch())) { 
unqetch ( *W) ; 
break; 

} 
*W = '\0'; 
return word[O]; 

getword uses the getch and ungetch that we wrote in Chapter 4. When 
the collection of an alphanumeric token stops, getword has gone one character 
too far. The call to ungetch pushes that character back on the input for the 
next call. getword also uses isspace to skip white space, isalpha to iden-
tify letters, and isalnum to identify letters and digits; all are from the stand-
ard header <ctype. h>. 

Exercise 6-l. Our version of getword does not properly handle underscores, 
string constants, comments, or preprocessor control lines. Write a better ver-
sion. D 

6.4 Pointers to Structures 
To illustrate some of the considerations involved with pointers to and arrays 

of structures, let us write the keyword-counting program again, this time using 
pointers instead of array indices. 

The external declaration of keytab need not change, but main and 
binsearch do need modification. 



SECTION 6.4 POINTERS TO STRUCTURES 137 

#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 
#define MAXWORD 100 

int getword(char *• int); 
struct key *binsearch(char *• struct key *• int); 

/* count C keywords; pointer version */ 
main() 
{ 

} 

char word[MAXWORD]; 
struct key *Pi 

while (getword(word, MAXWORD) I= EOF) 
if (isalpha(word[O])) 

if ((p=binsearch(word, keytab, NKEYS)) I= NULL) 
p->count++; 

for (p = keytab; p < keytab + NKEYS; p++) 
if (p->count > 0) 

printf( "%4d %s\n", p->count, p->word); 
return 0; 

/* binsearch: find word in tab[O] .•. tab[n-1] */ 
struct key *binsearch(char *WOrd, struct key *tab, int n) 
{ 

} 

int cond; 
struct key *low= &tab[O]; 
struct key *high= &tab[n]; 
struct key *mid; 

while (low < high) { 

} 

mid = low + (high-low) I 2; 
if ((cond = strcmp(word, mid->word)) < 0) 

high = mid; 
else if (cond > 0) 

low = mid + 1; 
else 

return mid; 

return NULL; 

There are several things worthy of note here. First, the declaration of 
binsearch must indicate that it returns a pointer to struct key instead of 
an integer; this is declared both in the function prototype and in binsearch. 
If binsearch finds the word, it returns a pointer to it; if it fails, it returns 
NULL. 

Second, the elements of keytab are now accessed by pointers. This 



138 STRUCTURES CHAPTER 6 

requires significant changes in binsearch. 
The initializers for low and high are now pointers to the beginning and just 

past the end of the table. 
The computation of the middle element can no longer be simply 

mid = (low+high) I 2 

because the addition of two pointers is illegal. Subtraction is legal, however, so 
high-low is the number of elements, and thus 

mid = low + (high-low) I 2 

sets mid to point to the element halfway between low and high. 
The most important change is to adjust the algorithm to make sure that it 

does not generate an illegal pointer or attempt to access an element outside the 
array. The problem is that &.tab[ -1] and &.tab[n] are both outside the lim-
its of the array tab. The former is strictly illegal, and it is illegal to derefer-
ence the latter. The language definition does guarantee, however, that pointer 
arithmetic that involves the first element beyond the end of an array (that is, 
&.tab[n]) will work correctly. 

In main we wrote 
for (p = keytab; p < keytab + NKEYS; p++) 

If p is a pointer to a structure, arithmetic on p takes into account the size of the 
structure, so p++ increments p by the correct amount to get the next element of 
the array of structures, and the test stops the loop at the right time. 

Don't assume, however, that the size of a structure is the sum of the sizes of 
its members. Because of alignment requirements for different objects, there 
may be unnamed "holes" in a structure. Thus, for instance, if a char is one 
byte and an int four bytes, the structure 

struct { 
char c; 
int i; 

} ; 

might well require eight bytes, not five. The sizeof operator returns the 
proper value. 

Finally, an aside on program format: when a function returns a complicated 
type like a structure pointer, as in 

struct key *binsearch(char *Word, struct key *tab, int n) 

the function name can be hard to see, and to find with a text editor. Accord-
ingly an alternate style is sometimes used: 

struct key * 
binsearch(char *WOrd, struct key *tab, int n) 

This is a matter of personal taste; pick the form you like and hold to it. 



SECTION 6.5 SELF-REFERENTIAL STRUCTURES 139 

6.5 Self-referential Structures 
Suppose we want to handle the more general problem of counting the 

occurrences of all the words in some input. Since the list of words isn't known 
in advance, we can't conveniently sort it and use a binary search. Yet we can't 
do a linear search for each word as it arrives, to see if it's already been seen; the 
program would take too long. (More precisely, its running time is likely to grow 
quadratically with the number of input words.) How can we organize the data 
to cope efficiently with a list of arbitrary words? 

One solution is to keep the set of words seen so far sorted at all times, by 
placing each word into its proper position in the order as it arrives. This 
shouldn't be done by shifting words in a linear array, though-that also takes 
too long. Instead we will use a data structure called a binary tree. 

The tree contains one "node" per distinct word; each node contains 

a pointer to the text of the word 
a count of the number of occurrences 
a pointer to the left child node 
a pointer to the right child node 

No node may have more than two children; it might have only zero or one. 
The nodes are maintained so that at any node the left subtree contains only 

words that are lexicographically less than the word at the node, and the right 
subtree contains only words that are greater. This is the tree for the sentence 
"now is the time for all good men to come to the aid of their party", as built by 
inserting each word as it is encountered: 

now 
/""-is the 

fo/ o( \ime 
/ \ \ I\ 

all good party their to 
I\ 

aid come 

To find out whether a new word is already in the tree, start at the root and 
compare the new word to the word stored at that node. If they match, the ques-
tion is answered affirmatively. If the new word is less than the tree word, con-
tinue searching at the left child, otherwise at the right child. If there is no child 
in the required direction, the new word is not in the tree, and in fact the empty 
slot is the proper place to add the new word. This process is recursive, since the 
search from any node uses a search from one of its children. Accordingly, 
recursive routines for insertion and printing will be most natural. 

Going back to the description of a node, it is conveniently represented as a 
structure with four components: 



140 STRUCTURES CHAPTER 6 

/* the tree node: */ 
/* points to the text */ 

struct tnode { 
char *word; 
int count; 
struct tnode 
struct tnode 

*left; 
*right; 

/* number of occurrences */ 
/* left child */ 
I* right child */ 

} ; 

This recursive declaration of a node might look chancy, but it's correct. It is 
illegal for a structure to contain an instance of itseif, but 

struct tnode *left; 

declares left to be a pointer to a tnode, not a tnode itself. 
Occasionally, one needs a variation of self-referential structures: two struc-

tures that refer to each other. The way to handle this is: 
struct t { 

struct s *P; /* p points to an s */ 
} ; 
struct s { 

struct t *q; /* q points to a t */ 
} ; 

The code for the whole program is surprisingly small, given a handful of sup-
porting routines like getword that we have already written. The main routine 
reads words with getword and installs them in the tree with addtree. 

#include <stdio.h> 
#include <ctype.h> 
#include <string.h> 

#define MAXWORD 100 
struct tnode *addtree(struct tnode *• char*); 
void treeprint(struct tnode *); 
int getword(char *• int); 

/* word frequency count */ 
main() 
{ 

} 

struct tnode *root; 
char word[MAXWORD]; 

root • NULL; 
while (getword(word, MAXWORD) I= EOF) 

if (isalpha(word[O])) 
root= addtree(root, word); 

treeprint(root); 
return 0; 



SECTION 6.5 SELF-REFERENTIAL STRUCTURES 141 

The function addtree is recursive. A word is presented by main to the top 
level (the root) of the tree. At each stage, that word is compared to the word 
already stored at the node, and is percolated down to either the left or right sub-
tree by a recursive call to addtree. Eventually the word either matches some-
thing already in the tree (in which case the count is incremented), or a null 
pointer is encountered, indicating that a node must be created and added to the 
tree. If a new node is created,- addtree returns a pointer to it, which is 
installed in the parent node. 

struct tnode *talloc(void); 
char *Strdup(char *); 

/* addtree: add a node with w, at or below p */ 
struct tnode *addtree(struct tnode *P• char *W) 
{ 

} 

int cond; 

if (p == NULL) { /* a new word has arrived */ 
p = talloc(); /*make a new node*/ 
p->word = strdup(w); 
p->count = 1; 
p->left = p->right = NULL; 

} else if ((cond = strcmp(w, p->word)) == 0) 
p->count++; /* repeated word */ 

else if (cond < 0) /* less than into left subtree */ 
p->left = addtree(p->left, w); 

else /* greater than into right subtree */ 
p->right = addtree(p->right, w); 

return p; 

Storage for the new node is fetched by a routine talloc, which returns a 
pointer to a free space suitable for holding a tree node, and the new word is 
copied to a hidden place by strdup. (We will discuss these routines in a 
moment.) The count is initialized, and the two children are made null. This 
part of the code is executed only at the leaves of the tree, when a new node is 
being added. We have (unwisely) omitted error checking on the values returned 
by strdup and talloc. 

treeprint prints the tree in sorted order; at each node, it prints the left 
subtree (all the words less than this word), then the word itself, then the right 
subtree (all the words greater). If you feel shaky about how recursion works, 
simulate treeprint as it operates on the tree shown above. 



142 STRUCTURES 

/* treeprint: in-order print of tree p */ 
void treeprint(struct tnode *P) 
{ 

} 

if (p I= NULL) { 
treeprint(p->left); 

} 

print£( "%4d %s\n", p->count, p->word); 
treeprint(p->right); 

CHAPTER 6 

A practical note: if the tree becomes "unbalanced" because the words don't 
arrive in random order, the running time of the program can grow too much. 
As a worst case, if the words are already in order, this program does an expen-
sive simulation of linear search. There are generalizations of the binary tree 
that do not suffer from this worst-case behavior, but we will not describe them 
here. 

Before we leave this example, it is also worth a brief digression on a problem 
related to storage aUocators. Clearly it's that there be only one 
storage allocator in a program, even though it 'allocates different kinds of 
objects. But if one alloeator is to process req'!lests for, say, pointers to chars 
and pointers to struct tnodes, two questioqs !lrise. First, how does it meet 
the requirement of most real machines that objects of certain types must satisfy 
alignment· restrictions (for example, integers often must be located at even 
addresses)? Secong, what declarations can cope with the fact that an allocator 
must necessarily return different kinds of 

Alignment requirements can generally be easily, at the cost of some 
wasted space, by ensuring that the allocator always returns a pointer that meets 
all alignment restrictions. The alloc of Chapter 5 does not guarantee any 
particular alignment, so we will use the standard library function malloc, 
which does. In Chapter 8 we will show OIJ.e way to implement malloc. 

The question of the type declaration for a function like malloc is a vexing 
one for any language that takes its type-checking seriously. In C, the proper 
method is to declare that malloc a pojnter to void, then explicitly 
coerce the pointer into the desired type with a cast. malloc and related rou-
tines are declared in the standard header <stdlib. h>. Thus talloc can be 
written as 

#include <$tdlib.h> 

/* talloc: make tnode */ 
struct *talloc(void) 
{ 

return (struct tnode *> mallop(sizeof(struct tnode)); 
} 

strdup merely copies the string given by its argument into a safe place, 
obtained by a call on 



SECTION 6.6 

char *Strdup(char *S) 
{ 

char *P; 

TABLE LOOKUP 143 

I* make a duplicate of s */ 

p = (char*) rnalloc(strlen(s)+1); /* +1 for '\0' *I 
if (p I= NULL) 

strcpy ( p, s ) ; 
return p; 

} 

malloc returns NULL if no space is available; strdup passes that value on, 
leaving error-handling to its caller. 

Storage obtained by calling malloc may be freed for re-use by calling 
free; see Chapters 7 and 8. 

Exercise 6-2. Write a program that reads a C program and prints in alphabeti-
cal order each group of variable names that are identical in the first 6 charac-
ters, but different somewhere thereafter. Don't count words within strings and 
comments. Make 6 a parameter that can be set from the command line. D 

Exercise 6-3. Write a cross-referencer that prints a list of all words in a docu-
ment, and, for each word, a list of the line numbers on which it occurs. Remove 
noise words like "the," "and," and so on. D 

Exercise 6-4. Write a program that prints the distinct words in its input sorted 
into decreasing order of frequency of occurrence. Precede each word by its 
count. D 

6.6 Table Lookup 
In this section we will write the innards of a table-lookup package, to illus-

trate more aspects of structures. This code is typical of what might be found in 
the symbol table management routines of a macro processor or a compiler. For 
example, consider the #define statement. When a line like 

#define IN 1 

is encountered, the name IN and the replacement text 1 are stored in a table. 
Later, when the name IN appears in a statement like 

state = IN; 

it must be replaced by 1. 
There are two routines that manipulate the names and replacement texts. 

install ( s, t) records the name s and the replacement text t in a table; s 
and t are just character strings. lookup( s) searches for s in the table, and 
returns a pointer to the place where it was found, or NULL if it wasn't there. 

The algorithm is a hash search-the incoming name is converted into a small 



144 STRUCTURES CHAPTER 6 

non-negative integer, which is then used to index into an array of pointers. An 
array element points to the beginning of a linked list of blocks describing names 
that have that hash value. It is NULL if no names have hashed to that value. 

name 
defn 

A block in the list is a structure containing pointers to the name, the 
replacement text, and the next block in the list. A null next-pointer marks the 
end of the list. 

struct nlist { /* table entry: */ 
struct nlist *next; /* next entry in chain */ 
char *name; /* defined name */ 
char *defn; /* replacement text */ 

} ; 

The pointer array is just 

#define HASHSIZE 101 

static struct nlist *hashtab[HASHSIZE]; /*pointer table*/ 

The hashing function, which is used by both lookup and install, adds 
each character value in the string to a scrambled combination of the previous 
ones and returns the remainder modulo the array size. This is not the best pos-
sible hash function, but it is short and effective. 

I* hash: form hash value for string s */ 
unsigned hash(char *S) 
{ 

} 

unsigned hashval; 

for (hashval = 0; *S I= '\0'; s++) 
hashval = *S + 31 * hashval; 

return hashval % HASHSIZE; 

Unsigned arithmetic ensures that the hash value is non-negative. 
The hashing process produces a starting index in the array hashtab; if the 

string is to be found anywhere, it will be in the list of blocks beginning there. 
The search is performed by lookup. If lookup finds the entry already 
present, it returns a pointer to it; if not, it returns NULL. 



SECTION 6.6 TABLE LOOKUP 145 

/* lookup: look for s in hashtab */ 
struct nlist *lookup(char *S) 
{ 

} 

struct nlist *np; 

for (np = hashtab[hash(s)]; np I= NULL; np = np->next) 
if (strcmp(s, np->name) == 0) 

return np; /* found */ 
return NULL; /* not found */ 

The for loop in lookup is the standard idiom for walking along a linked list: 
for (ptr = head; ptr I= NULL; ptr = ptr->next) 

install uses lookup to determine whether the name being installed is 
already present; if so, the new definition will supersede the old one. Otherwise, 
a new entry is created. install returns NULL if for any reason there is no 
room for a new entry. 

struct nlist *lookup(char *); 
char *Strdup(char *); 

/* install: put (name, defn) in hashtab */ 
struct nlist *install(char *name, char *defn) 
{ 

} 

struct nlist *np; 
unsigned hashval; 

if ((np = lookup(name)) ==NULL) { /*not found*/ 
np = (struct nlist *) malloc(sizeof(*np)); 
if (np ==NULL :: (np->name = strdup(name)) ==NULL) 

return NULL; 
hashval = hash(name); 
np->next = hashtab[hashval]; 
hashtab[hashval] = np; 

} else /* already there */ 
free((void *) np->defn); /*free previous defn */ 

if ((np->defn = strdup(defn)) ==NULL) 
return NULL; 

return np; 

Exercise 6-5. Write a function undef that will remove a name and definition 
from the table maintained by lookup and install. o 
Exercise 6-6. Implement a simple version of the #define processor (i.e., no 
arguments) suitable for use with C programs, based on the routines of this sec-
tion. You may also find getch and ungetch helpful. 0 



146 STRUCTURES CHAPTER 6 

6.7 Typedef 
C provides a facility called typedef for creating new data type names. For 

example, the declaration 
typedef int Length; 

makes the name Length a synonym for int. The type Length can be used in 
declarations, casts, etc., in exactly the same ways that the type int can be: 

Length 
Length 

len, maxlen; 
*lengths[]; 

Similarly, the declaration 
typedef char *String; 

makes String a synonym for char *or character pointer, which may then be 
used in declarations and casts: 

String p, lineptr[MAXLINES], alloc(int); 
int· strcmp(String, String); 
p = (String) malloc(100); 

Notice that the type being declared in a typedef appears in the position of 
a variable name, not right after the word typedef. Syntactically, typedef is 
like the storage classes extern, static, etc. We have used capitalized names 
for typedefs, to make them stand out. 

As a more complicated example, we could make typedefs for the tree 
nodes shown earlier in this chapter: 

typedef struct tnode *Treeptr; 

typedef struct tnode { /* the tree node: *I 
char *WOrd; /* points to the text */ 
int count; /* number of occurrences *I 
Treeptr left; /* left child */ 
Treeptr right; /* right child *I 

} Treenode; 

This creates two new type keywords called Treenode (a structure) and 
Treeptr (a pointer to the structure). Then the routine talloc could become 

Treeptr talloc(void) 
{ 

return (Treeptr) malloc(sizeof(Treenode)); 
} 

It must be emphasized that a typedef declaration does not create a new 
type in any sense; it merely adds a new name for some existing type. Nor are 
there any new semantics: variables declared this way have exactly the same pro-
perties as variables whose declarations are spelled out explicitly. In effect, 
typedef is like #define, except that since it is interpreted by the compiler, it 



SECTION 6.8 UNIONS 147 

can cope with textual substitutions that are beyond the capabilities of the 
preprocessor. For example, 

typedef int (*PFI)(char *• char*); 

creates the type PFI, for "pointer to function (of two char * arguments) 
returning int," which can be used in contexts like 

PFI strcmp, numcmp; 

in the sort program of Chapter 5. 
Besides purely aesthetic issues, there are two main reasons for using 

typedefs. The first is to parameterize a program against portability problems. 
If typedefs are used for data types that may be machine-dependent, only the 
typedefs need change when the program is moved. One common situation is 
to use typedef names for various integer quantities, then make an appropriate 
set of choices of short, int, and long for each host machine. Types like 

and ptrdiff_t from the standard library are examples. 
The second purpose of typedefs is to provide better documentation for a 

program-a type called Treeptr may be easier to understand than one 
declared only as a pointer to a complicated structure. 

6.8 Unions 
A union is a variable that may hold (at different times) objects of different 

types and sizes, with the compiler keeping track of size and alignment require-
ments. Unions provide a way to manipulate different kinds of data in a single 
area of storage, without embedding any machine-dependent information in the 
program. They are analogous to variant records in Pascal. 

As an example such as might be found in a compiler symbol table manager, 
suppose that a constant may be an int, a float, or a character pointer. The 
value of a particular constant must be stored in a variable of the proper type, 
yet it is most convenient for table management if the value occupies the same 
amount of storage and is stored in the same place regardless of its type. This is 
the purpose of a union-a single variable that can legitimately hold any one of 
several types. The syntax is based on structures: 

union u_tag { 
int ival; 
float fval; 
char *SVal; 

} u; 

The variable u will be large enough to hold the largest of the three types; the 
specific size is implementation-dependent. Any one of these types may be 
assigned to u and then used in expressions, so long as the usage is consistent: 
the type retrieved must be the type most recently stored. It is the programmer's 



148 STRUCTURES CHAPTER6 

responsibility to keep track of which type is currently stored in a union; the 
results are implementation-dependent if something is stored as one type and 
extracted as another. 

Syntactically, members of a union are accessed as 
union-name • member 

or 
union-pointer-> member 

just as for structures. If the variable utype is used to keep track of the current 
type stored in u, then one might see code such as 

if (utype == INT) 
printf ( "%d\n", u. ival); 

else if (utype == FLOAT) 
printf ( "%f\n", u. fval) ; 

else if (utype == STRING) 
printf( "%s\n", u. sval); 

else 
printf( "bad type %d in utype\n", utype); 

Unions may occur within structures and arrays, and vice versa. The notation 
for accessing a member of a union in a structure (or vice versa) is identical to 
that for nested structures. For example, in the structure array defined by 

struct { 
char *name; 
int flags; 
int utype; 
union { 

} u; 

int ival; 
float fval; 
char *Sval; 

} symtab[NSYM]; 

the member i val is referred to as 
symtab[i].u.ival 

and the first character of the string sval by either of 
*Symtab[i].u.sval 
symtab[i].u.sval[O] 

In effect, a union is a structure in which all members have offset zero from 
the base, the structure is big enough to hold the "widest" member, and the 
alignment is appropriate for all of the types in the union .. The same operations 
are permitted on unions as on structures: assignment to or copying as a unit, 
taking the address, and accessing a member. 

A union may only be initialized with a value of the type of its first member; 



SECTION 6.9 BIT-FIELDS 149 

thus the union u described above can only be initialized with an integer value. 
The storage allocator in Chapter 8 shows how a union can be used to force a 

variable to be aligned on a particular kind of storage boundary. 

6.9 Bit-fields 
When storage space is at a premium, it may be necessary to pack several 

objects into a single machine word; one common use is a set of single-bit flags in 
applications like compiler symbol tables. Externally-imposed data formats, such 
as interfaces to hardware devices, also often require the ability to get at pieces 
of a word. 

Imagine a fragment of a compiler that manipulates a symbol table. Each 
identifier in a program has certain information associated with it, for example, 
whether or not it is a keyword, whether or not it is external and/or static, and 
so on. The most compact way to encode such information is a set of one-bit 
flags in a single char or int. 

The usual way this is done is to define a set of "masks" corresponding to the 
relevant bit positions, as in 

or 

#define KEYWORD 01 
#define EXTERNAL 02 
#define STATIC 04 

enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 }; 

The numbers must be powers of two. Then accessing the bits becomes a matter 
of "bit-fiddling" with the shifting, masking, and complementing operators that 
were described in Chapter 2. 

Certain idioms appear frequently: 
flags :: EXTERNAL : STATIC; 

turns on the EXTERNAL and STATIC bits in flags, while 
flags&= -(EXTERNAL : STATIC); 

turns them off, and 
if ( (flags & (EXTERNAL : STATIC) ) = = 0 ) ... 

is true if both bits are off. 
Although these idioms are readily mastered, as an alternative C offers the 

capability of defining and accessing fields within a word directly rather than by 
bitwise logical operators. A bit-field, or field for short, is a set of adjacent bits 
within a single implementation-defined storage unit that we will call a "word." 
The syntax of field definition and access is based on structures. For example, 
the symbol table #defines above could be replaced by the definition of three 



ISO STRUCTURES 

fields: 
struct { 

unsigned int is_keyword 
unsigned int is_extern 
unsigned int is static 

} flags; 

1 ; 
1 • 
' 1 • 
' 

CHAPTER 6 

This defines a variable called flags that contains three 1-bit fields. The 
number following the colon represents the field width in bits. The fields are 
declared unsigned int to ensure that they are unsigned quantities. 

Individual fields are referenced in the same way as other structure members: 
flags. is_keyword, flags. is_extern, etc. fields behave like small 
integers, and may participate in arithmetic expressions just like other integers. 
Thus the previous examples may be written more naturally as 

flags.is_extern = flags.is_static = 1; 

to turn the bits on; 
flags.is_extern = flags.is_static = 0; 

to turn them off; and 
if (flags.is_extern -- 0 && flags.is_static -- 0) 

to test them. 
Almost everything about fields is implementation-dependent. Whether a 

field may overlap a word boundary is implementation-defined. Fields need not 
be named; unnamed fields (a colon and width only) are used for padding. The 
special width 0 may be used to force alignment at the next word boundary. 

Fields are assigned left to right on some machines and right to left on others. 
This means that although fields are useful for maintaining internally-defined 
data structures, the question of which end comes first has to be carefully con-
sidered when picking apart externally-defined data; programs that depend on 
such things are not portable. Fields may be declared only as ints; for portabil-
ity, specify signed or unsigned explicitly. They are not arrays, and they do 
not have addresses, so the & operator cannot be applied to them. 



cHAPTER 1: Input and Output 

Input and output facilities are not part of the C language itself, so we have 
not emphasized them in our presentation thus far. Nonetheless, programs 
interact with their environment in much more complicated ways than those we 
have shown before. In this chapter we will describe the standard library, a set 
of functions that provide input and output, string handling, storage manage-
ment, mathematical routines, and a variety of other services for C programs. 
We will concentrate on input and output. 

The ANSI standard defines these library functions precisely, so that they can 
exist in compatible form on any system where C exists. Programs that confine 
their system interactions to facilities provided by the standard library can be 
moved from one system to another without change. 

The properties of library functions are specified in more than a dozen 
headers; we have already seen several of these, including <stdio. h>, 
<string. h>, and <ctype. h>. We will not present the entire library here, 
since we are more interested in writing C programs that use it. The library is 
described in detail in Appendix B. 

7. 1 Standard Input and Output 
As we said in Chapter 1, the library implements a simple model of text input 

and output. A text stream consists of a sequence of lines; each line ends with a 
newline character. If the system doesn't operate that way, the library does 
whatever is necessary to make it appear as if it does. For instance, the library 
might convert carriage return and linefeed to newline on input and back again 
on output. 

The simplest input mechanism is to read one character at a time from the 
standard input, normally the keyboard, with getchar: 

int getchar(void) 

getchar returns the next input character each time it is called, or EOF when it 
encounters end of file. The symbolic constant EOF is defined in <stdio. h>. 

151 



152 INPUT AND OUTPUT CHAPTER 7 

The value is typically -1, but tests should be written in terms of EOF so as to be 
independent of the specific value. 

In many environments, a file may be substituted for the keyboard by using 
the < convention for input redirection: if a program prog uses getchar, then 
the command line 

prog <infile 

causes prog to read characters from infile instead. The switching of the 
input is done in such a way that prog itself is oblivious to the change; in partic-
ular, the string "<infile" is not included in the command-line arguments in 
argv. Input switching is also invisible if the input comes from another program 
via a pipe mechanism: on some systems, the command line 

otherprog : prog 

runs the two programs otherprog and prog, and pipes the standard output of 
otherprog into the standard input for prog. 

The function 
int putchar(int) 

is used for output: putchar (c) puts the character c on the standard output, 
which is by default the screen. putchar returns the character written, or EOF 
if an error occurs. Again, output can usually be directed to a file with 
>filename: if prog uses putchar, 

prog >outfile 

will write the standard output to outfile instead. If pipes are supported, 
prog : anotherprog 

puts the standard output of prog into the standard input of anotherprog. 
Output produced by printf also finds its way to the standard output. 

Calls to putchar and printf may be interleaved-output appears in the 
order in which the calls were made. 

Each source file that refers to an input/output library function must contain 
the line 

#include <stdio.h> 

before the first reference. When the name is bracketed by < and > a search is 
made for the header in a standard set of places (for example, on UNIX systems, 
typically in the directory /usr/include). 

Many programs read only one input stream and write only one output 
stream; for such programs, input and output with getchar, putchar, and 
printf may be entirely adequate, and is certainly enough to get started. This 
is particularly true if redirection is used to connect the output of one program to 
the input of the next. For example, consider the program lower, which con-
verts its input to lower case: 



SECTION 7.2 

#include <stdio.h> 
#include <ctype.h> 

FORMATTED OUTPUT-PRINTF 153 

main() /*lower: convert input to lower case*/ 
{ 

} 

int c; 

while ((c = getchar()) I= EOF) 
putchar(tolower(c)); 

return 0; 

The function tolower is defined in <ctype. h>; it converts an upper case 
letter to lower case, and returns other characters untouched. As we mentioned 
earlier, "functions" like getchar and putchar in <stdio. h> and tolower 
in <ctype. h> are often macros, thus avoiding the overhead of a function call 
per character. We will show how this is done in Section 8.5. Regardless of how 
the <ctype . h> functions are implemented on a given machine, programs that 
use them are shielded from knowledge of the character set. 

Exercise 7-1. Write a program that converts upper case to lower or lower case 
to upper, depending on the name it is invoked with, as found in argv[ 0 ]. D 

7.2 Formatted Output-Printf 
The output function printf translates internal values to characters. We 

have used printf informally in previous chapters. The description here covers 
most typical uses but is not complete; for the full story, see Appendix B. 

int print£ (char *format, arg 1 , arg2 , ... ) 

printf converts, formats, and prints its arguments on the standard output 
under control of the format. It returns the number of characters printed. 

The format string contains two types of objects: ordinary characters, which 
are copied to the output stream, and conversion specifications, each of which 
causes conversion and printing of the next successive argument to printf. 
Each conversion specification begins with a % and ends with a conversion char-
acter. Between the %and the conversion character there may be, in order: 

• A minus sign, which specifies left adjustment of the converted argument. 
• A number that specifies the minimum field width. The converted argument will be 

printed in a field at least this wide. If necessary it will be padded on the left (or 
right, if left adjustment is called for) to make up the field width. 

• A period, which separates the field width from the precision. 
• A number, the precision, that specifies the maximum number of characters to be 

printed from a string, or the number of digits after the decimal point of a floating-
point value, or the minimum number of digits for an integer. 



154 INPUT AND OUTPUT CHAPTER 7 

• An h if the integer is to be printed as a short, or 1 {letter ell) if as a long. 

Conversion characters are shown in Table 7-1. If the character after the % is 
not a conversion specification, the behavior is undefined. 

TABLE 7-1. BASIC PRINTF CONVERSIONS 

CHARACTER ARGUMENT TYPE; PRINTED AS 

d, i int; decimal number. 
o int; unsigned octal number (without a leading zero). 

x, X int; unsigned hexadecimal number (without a leading Ox or 
OX), using abcdef or ABCDEF for 10, ... , 15. 

u int; unsigned decimal number. 
c int; single character. 
s char *; print characters from the string until a '\0' or the 

number of characters given by the precision. 
f double; [- ]m.dddddd, where the number of d's is given by the 

precision (default 6). 
e, E double; [-]m.dddddde±xx or [-]m.ddddddE±xx, where the 

number of d's is given by the precision (default 6). 
g, G double; use %e or %E if the exponent is less than -4 or greater 

than or equal to the precision; otherwise use %£. Trailing zeros 
and a trailing decimal point are not printed. 

p void *; pointer (implementation-dependent representation). 
% no argument is converted; print a %. 

A width or precision may be specified as *• in which case the value is com-
puted by converting the next argument (which must be an int). For example, 
to print at most max characters from a string s, 

printf("%.*s", max, s); 

Most of the format conversions have been illustrated in earlier chapters. 
One exception is precision as it relates to strings. The following table shows the 
effect of a variety of specifications in printing "hello, world" (12 characters). 
We have put colons around each field so you can see its extent. 

:%s: :hello, world: 
:%10s: :hello, world: 
:%.10s: :hello, wor: 
:%-10s: :hello, world: 
:%. 15s: :hello, world: 
:%-15s: :hello, world 
:%15.10s: hello, wor: 
:%-15.10s: :hello, wor 

A warning: print£ uses its first argument to decide how many arguments 



SECTION 7.3 VARIABLE-LENGTH ARGUMENT LISTS 155 

follow and what their types are. It will get confused, and you will get wrong 
answers, if there are not enough arguments or if they are the wrong type. You 
should also be aware of the difference between these two calls: 

printf(s); /*FAILS if s contains%*/ 
printf("%s", s); /*SAFE*/ 

The function sprint£ does the same conversions as print£ does, but 
stores the output in a string: 

int sprintf(char *String, char *format, arg1 , arg2 , ••• ) 

sprint£ formats the arguments in arg 1, arg2, etc., according to format as 
before, but places the result in string instead of on the standard output; 
string must be big enough to receive the result. 

Exercise 7-2. Write a program that will print arbitrary input in a sensible way. 
As a minimum, it should print non-graphic characters in octal or hexadecimal 
according to local custom, and break long text lines. D 

7.3 Variable-length Argument Lists 
This section contains an implementation of a minimal version of print£, to 

show how to write a function that processes a variable-length argument list in a 
portable way. Since we are mainly interested in the argument processing, 
minprintf will process the format string and arguments but will call the real 
print£ to do the format conversions. 

The proper declaration for print£ is 
int printf(char *fmt, ... ) 

where the declaration .•. means that the number and types of these arguments 
may vary. The declaration ... can only appear at the end of an argument list. 
Our minprintf is declared as 

void minprintf(char *fmt, ... ) 

since we will not return the character count that print£ does. 
The tricky bit is how minprintf walks along the argument list when the 

list doesn't even have a name. The standard header <stdarg. h> contains a 
set of macro definitions that define how to step through an argument list. The 
implementation of this header will vary from machine to machine, but the inter-
face it presents is uniform. 

The type va_list is used to declare a variable that will refer to each argu-
ment in turn; in minprintf, this variable is called ap, for "argument pointer." 
The macro va_start initializes ap to point to the first unnamed argument. It 
must be called once before ap is used. There must be at least one named argu-
ment; the final named argument is used by va_start to get started. 



156 INPUT AND OUTPUT CHAPTER 7 

Each call of va_arg returns one argument and steps ap to the next; 
va_a:rg uses a type name to determine what type to return and how big a step 
to take. Finally, va_end does whatever cleanup is necessary. It must be called 
before the function returns. 

These properties form the basis of our simplified print£: 

#include <stdarq.h> 

I* minprintf: minimal printf with variable argument list */ 
void minprintf(char *fmt, ... ) 
{ 

} 

va_list ap; /* points to each unnamed arq in turn */ 
char *P, *Sval; 
int ival; 
double dval; 

va_start(ap, fmt); /*make appoint to 1st unnamed arq */ 
for (p = fmt; *P; p++) { 

if (*P I= '%') { 
putchar( *P); 
continue; 

} 
switch ( *++p) { 
case 'd': 

ival = va_arq(ap, int); 
printf ( 11 %d 11 , i val) ; 
break; 

case 'f': 
dval = va_arq(ap, double); 
printf ( 11 %f 11 , dval) ; 
break; 

case 's': 
for (sval = va_arq(ap, char*); *SVal; sval++) 

putchar ( *SVal) ; 
break; 

default: 
put char ( *P) ; 
break; 

} 
} 
va_end(ap); I* clean up when done */ 

Exercise 7-3. Revise minprintf to handle more of the other facilities of 
print£. D 



SECTION 7.4 FORMA TIED INPUT -SCANF 157 

7.4 Formatted Input-Scant 
The function scan£ is the input analog of print£, providing many of the 

same conversion facilities in the opposite direction. 
int scanf(char *format, ... ) 

scan£ reads characters from the standard input, interprets them according to 
the specification in format, and stores the results through the remaining argu-
ments. The format argument is described below; the other arguments, each of 
which must be a pointer, indicate where the corresponding converted input 
should be stored. As with print£, this section is a summary of the most useful 
features, not an exhaustive list. 

scan£ stops when it exhausts its format string, or when some input fails to 
match the control specification. It returns as its value the number of success-
fully matched and assigned input items. This can be used to decide how many 
items were found. On end of file, EOF is returned; note that this is different 
from 0, which means that the next input character does not match the first 
specification in the format string. The next call to scan£ resumes searching 
immediately after the last character already converted. 

There is also a function sscan£ that reads from a string instead of the 
standard input: 

int sscanf (char *String, char *format, arg1 , arg2 , ... ) 

It scans the string according to the format in format, and stores the result-
ing values through argb arg2 , etc. These arguments must be pointers. 

The format string usually contains conversion specifications, which are used 
to control conversion of input. The format string may contain: 

• Blanks or tabs, which are ignored. 
• Ordinary characters (not "), which are expected to match the next non-white space 

character of the input stream. 
• Conversion specifications, consisting of the character %, an optional assignment 

suppression character *• an optional number specifying a maximum field width, an 
optional h, 1, or L indicating the width of the target, and a conversion character. 

A conversion specification directs the conversion of the next input field. Nor-
mally the result is placed in the variable pointed to by the corresponding argu-
ment. If assignment suppression is indicated by the * character, however, the 
input field is skipped; no assignment is made. An input field is defined as a 
string of non-white space characters; it extends either to the next white space 
character or until the field width, if specified, is exhausted. This implies that 
scan£ will read across line boundaries to find its input, since newlines are 
white space. (White space characters are blank, tab, newline, carriage return, 
vertical tab, an4 formfeed.) 

The conversion character indicates the interpretation of the input field. The 
corresponding argument must be a pointer, as required by the call-by-value 



158 INPUT AND OUTPUT CHAPTER 7 

semantics of C. Conversion characters are shown in Table 7-2. 

TABLE 7-2. BASIC SCANF CONVERSIONS 

CHARACTER INPUT DATA; ARGUMENT TYPE 

d decimal integer; int *· 
i integer; int *· The integer may be in octal (leading O) or 

hexadecimal (leading Ox or ox). 
o octal integer (with or without leading zero); int *· 
u unsigned decimal integer; unsigned int *· 
x hexadecimal integer (with or without leading Ox or ox); int *· 
c characters; char *· The next input characters (default I) are 

placed at the indicated spot. The normal skip over white space 
is suppressed; to read the next non-white space character, use 
%1s. 

s character string (not quoted); char *• pointing to an array of 
characters large enough for the string and a terminating ''\0' 
that will be added. 

e, f, g floating-point number with optional sign, optional decimal point 

" 
and optional exponent; float *· 
literal %; no assignment is made. 

The conversion characters d, i, o, u, and x may be preceded by h to indi-
cate that a pointer to short rather than int appears in the argument list, or 
by 1 (letter ell) to indicate that a pointer to long appears in the argument list. 
Similarly, the conversion characters e, f, and g may be preceded by 1 to indi-
cate that a pointer to double rather than float is in the argument list. 

As a first example, the rudimentary calculator of Chapter 4 can be written 
with scan£ to do the input conversion: 

#include <stdio.h> 

main() /*rudimentary calculator*/ 
{ 

} 

double sum, v; 

sum = 0; 
while ( scanf ( "%lf" , &v) == 1 ) 

printf("'\t%.2f'\n", sum+= v); 
return 0; 

Suppose we want to read input lines that contain dates of the form 
25 Dec 1988 

The scan£ statement is 



SECTION 7.4 FORMA TIED INPUT -SCANF 159 

int day, year; 
char monthname[20]; 

scan£ ( "%d %s %d" , &day, monthname, &year) ; 

No&. is used with monthname, since an array name is a pointer. 
Literal characters can appear in the scanf format string; they must match 

the same characters in the input. So we could read dates of the form 
mm/dd/yy with this scanf statement: 

int day, month, year; 

scanf("%d/%d/%d", &month, &day, &year); 

scanf ignores blanks and tabs in its format string. Furthermore, it skips 
over white space (blanks, tabs, newlines, etc.) as it looks for input values. To 
read input whose format is not fixed, it is often best to read a line at a time, 
then pick it apart with sscanf. For example, suppose we want to read lines 
that might contain a date in either of the forms above. Then we could write 

while (getline(line, sizeof(line)) > 0) { 

} 

if (sscanf(line, "%d %s %d", &day, monthname, &year) == 3) 
printf("valid: %s\n", line); /* 25 Dec 1988 form*/ 

else if (sscanf(line, "%d/%d/%d", &month, &day, &year) == 3) 
print£( "valid: %s\n", line); I* mm/dd/yy form */ 

else 
printf("invalid: %s\n", line); /* invalid form*/ 

Calls to scanf can be mixed with calls to other input functions. The next 
call to any input function will begin by reading the first character not read by 
scanf. 

A final warning: the arguments to scanf and sscanf must be pointers. 
By far the most common error is writing 

scanf ( "%d" , n) ; 

instead of 

scanf( "%d", &n); 

This error is not generally detected at compile time. 

Exercise 7-4. Write a private version of scanf analogous to minprintf from 
the previous section. 0 

Exercise 7-5. Rewrite the postfix calculator of Chapter 4 to use scanf and/or 
sscanf to do the input and number conversion. 0 



160 INPUT AND OUTPUT CHAPTER 1 

7.5 File Access 
The examples so far have all read the standard input and written the stand-

ard output, which are automatically defined for a program by the local operat-
ing system. 

The next step is to write a program that accesses a file that is not already 
connected to the program. One program that illustrates the need for such 
operations is cat, which concatenates a set of named files onto the standard 
output. cat is used for printing files on the screen, and as a general-purpose 
input collector for programs that do not have the capability of accessing files by 
name. For example, the command 

cat x.c y.c 

prints the contents of the files x . c and y. c (and nothing else) on the standard 
output. 

The question is how to arrange for the named files to be read-that is, how 
to connect the external names that a user thinks of to the statements that read 
the data. 

The rules are simple. Before it can be read or written, a file has to be 
opened by the library function f open. f open takes an external name like x • c 
or y. c, does some housekeeping and negotiation with the operating system 
(details of which needn't concern us), and returns a pointer to be used in subse-
quent reads or writes of the file. 

This pointer, called the file pointer, points to a structure that contains infor-
mation about the file, such as the location of a buffer, the current character 
position in the buffer, whether the file is being read or written, and whether 
errors or end of file have occurred. Users don't need to know the details, 
because the definitions obtained from < stdio . h> include a structure declara-
tion called FILE. The only declaration needed for a file pointer is exemplified 
by 

FILE *fp; 
FILE *fopen(char *name, char *mode); 

This says that fp is a pointer to a FILE, and £open returns a pointer to a 
FILE. Notice that FILE is a type name, like int, not a structure tag; it is 
defined with a typedef. (Details of how £open can be implemented on the 
UNIX system are given in Section 8.5.) 

The call to £open in a program is 
fp = fopen(name, mode); 

The first argument of £open is a character string containing the name of the 
file. The second argument is the mode, also a character string, which indicates 
how one intends to use the file. Allowable modes include read ("r"), write 
( "w"), and append ("a"). Some systems distinguish between text and binary 
files; for the latter, a "b" must be appended to the mode string. 



SECTION 7.5 FILE ACCESS 161 

If a file that does not exist is opened for writing or appending, it is created if 
possible. Opening an existing file for writing causes the old contents to be dis-
carded, while opening for appending preserves them. Trying to read a file that 
does not exist is an error, and there may be other causes of error as well, like 
trying to read a file when you don't have permission. If there is any error, 
fopen will return NULL. (The error can be identified more precisely; see the 
discussion of error-handling functions at the end of Section 1 in Appendix B.) 

The next thing needed is a way to read or write the file once it is open. 
There are several possibilities, of which qetc and putc are the simplest. qetc 
returns the next character from a file; it needs the file pointer to tell it which 
file. 

int getc(FILE •fp) 

qetc returns the next character from the stream referred to by fp; it returns 
EOF for end of file or error. 

putc is an output function: 
int putc(int c, FILE •fp) 

putc writes the character c to the file fp and returns the character written, or 
EOF if an error occurs. Like qetchar and putchar, qetc and putc may be 
macros instead of functions. 

When a C program is started, the operating system environment is responsi-
ble for opening three files and providing file pointers for them. These files are 
the standard input, the standard output, and the standard error; the correspond-
ing file pointers are called stdin, stdout, and stderr, and are declared in 
<stdio. h>. Normally stdin is connected to the keyboard and stdout and 
stderr are connected to the screen, but stdin and stdout may be 
redirected to files or pipes as described in Section 7 .1. 

qetchar and putchar can be defined in terms of qetc, putc, stdin, 
and stdout as follows: 

#define getchar() 
#define putchar(c) 

getc(stdin) 
putc((c), stdout) 

For formatted input or output of files, the functions fscanf and fprintf 
may be used. These are identical to scanf and print£, except that the first 
argument is a file pointer that specifies the file to be read or written; the format 
string is the second argument. 

int fscanf(FILE •fp, char •format, ... ) 
int fprintf(FILE •fp, char •format, ... ) 

With these preliminaries out of the way, we are now in a position to write 
the program cat to concatenate files. The design is one that has been found 
convenient for many programs. If there are command-line arguments, they are 
interpreted as filenames, and processed in order. If there are no arguments, the 
standard input is processed. 



162 INPUT AND OUTPUT 

#include <stdio.h> 

/* cat: concatenate files, version 1 */ 
main(int argc, char *argv[]) 
{ 

FILE *fp; 
void filecopy(FILE *t FILE*); 

CHAPTER 7 

if (argc == 1) /*no args; copy standard input */ 
filecopy(stdin, stdout); 

} 

else 
while (--argc > 0) 

if ( ( fp = £open( *++argv, "r")) == NULL) { 
printf("cat: can't open %s\n", *argv); 
return 1; 

} else { 

} 

filecopy(fp, stdout); 
fclose(fp); 

return 0; 

/* filecopy: copy file ifp to file ofp */ 
void filecopy(FILE *ifp, FILE *Ofp) 
{ 

} 

int c; 

while ((c = getc(ifp)) I= EOF) 
putc(c, ofp); 

The file pointers stdin and stdout are objects of type FILE *· They are 
constants, however, not variables, so it is not possible to assign to them. 

The function 

int fclose(FILE *fp) 

is the inverse of £open; it breaks the connection between the file pointer and 
the external name that was established by £open, freeing the file pointer for 
another file. Since most operating systems have some limit on the number of 
files that a program may have open simultaneously, it's a good idea to free file 
pointers when they are no longer needed, as we did in cat. There is also 
another reason for £close on an output file-it flushes the buffer in which 
putc is collecting output. £close is called automatically for each open file 
when a program terminates normally. (You can close stdin and stdout if 
they are not · needed. They can also be reassigned by the library function 
£reopen.) 



SECTION 7.6 ERROR HANDLING-STDERR AND EXIT 163 

7.6 Error Handllng-Stderr and Exit 
The treatment of errors in cat is not ideal. The trouble is that if one of the 

files can't be accessed for some reason, the diagnostic is printed at the end of 
the concatenated output. That might be acceptable if the output is going to a 
screen, but not if it's going into a file or into another program via a pipeline. 

To handle this situation better, a second output stream, called stderr, is 
assigned to a program in the same way that stdin and stdout are. Output 
written on stderr normally appears on the screen even if the standard output 
is redirected. 

Let us revise cat to write its error messages on the standard error. 
#include <stdio.h> 

/* cat: concatenate files, version 2 */ 
main(int argc, char *argv[]) 
{ 

} 

FILE *fp; 
void filecopy(FILE *• FILE*); 
char *Prog = argv[O]; /* name for errors*/ 

if (argc == 1) /* no args; copy standard input */ 
filecopy(stdin, stdout); 

else 
while (--argc > 0) 

if ( (fp = fopen(*++argv, "r")) == NULL) { 
fprintf(stderr, "%s: can't open %s\n", 

prog, *argv); 
exit( 1); 

} else { 

} 

filecopy(fp, stdout); 
fclose(fp); 

if (ferror(stdout)) { 

} 

fprintf(stderr, "%s: error writing stdout\n", prog); 
exit( 2); 

exit(O); 

The program signals errors two ways. First, the diagnostic output produced 
by fprintf goes onto stderr, so it finds its way to the screen instead of 
disappearing down a pipeline or into an output file. We included the program 
name, from argv [ 0 ] , in the message, so if this program is used with others, 
the source of an error is identified. 

Second, the program uses the standard library function exit, which ter-
minates program execution when it is called. The argument of exit is avail-
able to whatever process called this one, so the success or failure of the program 
can be tested by another program that uses this one as a sub-process. 



164 INPUT AND OUTPUT CHAPTER 7 

Conventionally, a return value of 0 signals that all is well; non-zero values usu-
ally signal abnormal situations. exit calls fclose for each open output file, 
to flush out any buffered output. 

Within main, return expr is equivalent to exit ( expr). exit has the 
advantage that it can be called from other functions, and that calls to it can be 
found with a pattern-searching program like those in Chapter 5. 

The function ferror returns non-zero if an error occurred on the stream 
fp. 

int ferror(FILE *fP) 

Although output errors are rare, they do occur (for example, if a disk fills up), 
so a production program should check this as well. 

The function feof (FILE *) is analogous to ferror; it returns non-zero if 
end of file has occurred on the specified file. 

int feof(FILE *fP) 

We have generally not worried about exit status in our small illustrative pro-
grams, but any serious program should take care to return sensible, useful status 
values. 

7. 7 Line Input and Output 
The standard library provides an input routine fgets that is similar to the 

getline function that we have used in earlier chapters: 

char *fqets(char *line, int maxline, FILE *fp) 

fgets reads the next input line (including the newline) from file fp into the 
character array line; at most maxline-1 characters will be read. The result-
ing line is terminated with '\0 '. Normally fgets returns line; on end of 
file or error it returns NULL. (Our getline returns the line length, which is a 
more useful value; zero means end of file.) 

For output, the function fputs writes a string (which need not contain a 
newline) to a file: 

int fputs(char *line, FILE *fp) 

It returns EOF if an error occurs, and zero otherwise. 
The library functions gets and puts are similar to fgets and fputs, but 

operate on stdin and stdout. Confusingly, gets deletes the terminal '\n ', 
and puts adds it. 

To show that there is nothing special about functions like fgets and 
fputs, here they are, copied from the standard library on our system: 



SECTION 7.7 LINE INPUT AND OUTPUT 165 

/* fgets: get at most n chars from iop */ 
char *fgets(char *S, int n, FILE *iop) 
{ 

} 

register int c; 
register char *CS; 

cs = s; 
while (--n > 0 && (c = getc(iop)) I= EOF) 

if ((*CS++ =c) == '\n') 
break; 

*CS = '\0'; 
return (c == EOF && cs == s) ? NULL s; 

/* fputs: put string s on file iop *I 
int fputs(char *S, FILE dop) 
{ 

int c; 

while (c = *S++) 
putc(c, iop); 

return ferror(iop) ? EOF 0. 
' } 

The standard specifies that ferror returns non-zero for error; fputs returns 
EOF for error and a non-negative value otherwise. 

It is easy to implement our getline from fgets: 

/* getline: read a line, return length */ 
int getline(char *line, int max) 
{ 

} 

if (fgets(line, max, stdin) == NULL) 
return 0; 

else 
return strlen(line); 

Exercise 7-6. Write a program to compare two files, printing the first line 
where they differ. 0 

Exercise 7-7. Modify the pattern finding program of Chapter 5 to take its input 
from a set of named files or, if no files are named as arguments, from the stand-
ard input. Should the file name be printed when a matching line is found? 0 

7-8. Write a program to print a set of files, starting each new one on a 
new page, with a title and a running page countfor each file. D 



166 INPUT AND OUTPUT CHAPTER 7 

7.8 Miscellaneous Functions 
The standard library provides a wide variety of functions. This section is a 

brief synopsis of the most useful. More details and many other functions can be 
found in Appendix B. 

7 .8. 1 String Operations 

We have already mentioned the string functions strlen, strcpy, strcat, 
and strcmp, found in <string. h>. In the following, s and t are char *'s, 
and c and n are ints. 

strcat(s,t) 
strncat(s,t,n) 
strcmp(s,t) 

strncmp(s,t,n) 
strcpy(s,t) 
strncpy(s,t,n) 
strlen(s) 
stfbhr(s,c) 
strrchr(s,c) 

concatenate t to end of s 
concatenate n characters of t to end of s 
return negative, zero, or positive for 

s < t, s == t, or s > t 
same as strcmp but only in first n characters 
copy t to s 
copy at most n characters of t to s 
return length of s 
return pointer to first c in s, or NULL if not present 
return pointer to last c in s, or NULL if not present 

7 .8.2 Character Class Testing and Conversion 

Several functions from <ctype. h> perform character tests and conversions. 
In the following, c is an int that can be represented as an unsigned char, 
or EOF. The functions return int. 

isalpha(c) 
isupper(c) 
islower(c) 
isdigit(c) 
isalnum(c) 
isspace(c) 
toupper(c) 
tolower(c) 

7 .8.3 Ungetc 

non-zero if c is alphabetic, 0 if not 
non-zero if c is upper case, 0 if not 
non-zero if c is lower case, 0 if not 
non-zero if c is digit, 0 if not 
non-zero if isalpha (c) or isdigi t (c), 0 if not 
non-zero if c is blank, tab, newline, return, formfeed, vertical tab 
return c converted to upper case 
return c converted to lower case 

The standard library provides a rather restricted version of the function 
ungetch that we wrote in Chapter 4; it is called ungetc. 

int ungetc(int c, FILE *fp) 

pushes the character c back onto file fp, and returns either c, or EOF for an 
error. Only one character of pushback is guaranteed per file. ungetc may be 
used with any of the input functions like scan£, getc, or getchar. 



SECTION 7.8 MISCELLANEOUS FUNCTIONS 167 

7 .8.4 Command Execution 

The function system{ char *S) executes the command contained in the 
character string s, then resumes execution of the current program. The con-
tents of s depend strongly on the local operating system. As a trivial example, 
on UNIX systems, the statement 

system( "date"); 

causes the program date to be run; it prints the date and time of day on the 
standard output. system returns a system-dependent integer status from the 
command executed. In the UNIX system, the status return is the value returned 
by exit. 

7 .8.5 Storage Management 

The functions malloc and calloc obtain blocks of memory dynamically. 
void *malloc(size_t n) 

returns a pointer to n bytes of uninitialized storage, or NULL if the request can-
not be satisfied. 

void *Calloc(size_t n, size_t size) 

returns a pointer to enough space for an array of n objects of the specified size, 
or NULL if the request cannot be satisfied. The storage is initialized to zero. 

The pointer returned by malloc or calloc has the proper alignment for 
the object in question, but it must be cast into the appropriate type, as in 

int dp; 

ip = (int *) calloc(n, sizeof(int)); 

free { p) frees the space pointed to by p, where p was originally obtained 
by a call to malloc or calloc. There are no restrictions on the order in 
which space is freed, but it is a ghastly error to free something not obtained by 
calling calloc or malloc. 

It is also an error to use something after it has been freed. A typical but 
incorrect piece of code is this loop that frees items from a list: 

for (p = head; p I= NULL; p = p->next) 
free(p); 

I* WRONG */ 

The right way is to save whatever is needed before freeing: 
for (p = head; p I= NULL; p = q) { 

q = p->next; 
free(p); 

} 

Section 8.7 shows the implementation of a storage allocator like malloc, in 



168 INPUT AND OUTPUT CHAPTER 7 

which allocated blocks may be freed in any order. 

7 .8.6 Mathematical Functions 

There are more than twenty mathematical functions declared in <math. h>; 
here are some of the more frequently used. Each takes one or two double 
arguments and returns a double. 

sin(x) 
cos(x) 
atan2 (y ,x) 
exp(x) 
loq(x) 
loq10(x) 
pow(x,y) 
sqrt(x) 
fabs(x) 

sine of x, x in radians 
cosine of x, x in radians 
arctangent of y /x, in radians 
exponential function ex 
natural (base e) logarithm of x (x > 0) 
common (base 1 0) logarithm of x (x > 0) 
xY 
square root of x (x 
absolute value of x 

7 .8. 7 Random Number Generation 

The function rand ( ) computes a sequence of pseudo-random integers in the 
range zero to RAND_MAX, which is defined in <stdlib.h>. One way to pro-
duce random floating-point numbers greater than or equal to zero but less than 
one is 

#define £rand() ((double) rand() I (RAND_MAX+1.0)) 

(If your library already provides a function for floating-point random numbers, 
it is likely to have better statistical properties than this one.) 

The function srand (unsigned) sets the seed for rand. The portable 
implementation of rand and srand suggested by the standard appears in Sec-
tion 2.7. 

Exercise 7-9. Functions like isupper can be implemented to save space or to 
save time. Explore both possibilities. D 



cHAPTER a: The UNIX System Interface 

The UNIX operating system provides its services through a set of system 
calls, which are in effect functions within the operating system that may be 
called by user programs. This chapter describes how to use some of the most 
important system calls from C programs. If you use UNIX, this should be 
directly helpful, for it is sometimes necessary to employ system calls for max· 
imum efficiency, or to access some facility that is not in the library. Even if 
you use Con a different operating system, however, you should be able to glean 
insight into C programming from studying these examples; although details 
vary, similar code will be found on any system. Since the ANSI C library is in 
many cases modeled on UNIX facilities, this code may help your understanding 
of the library as well. 

The chapter is divided into three major parts: input/output, file system, and 
storage allocation. The first two parts assume a modest familiarity with the 
external characteristics of UNIX systems. 

Chapter 7 was concerned with an input/output interface that is uniform 
across operating systems. On any particular system the routines of the standard 
library have to be written in terms of the facilities provided by the host system. 
In the next few sections we will describe the UNIX system calls for input and 
output, and show how parts of the standard library can be implemented with 
them. 

8. 1 File Descriptors 
In the UNIX operating system, all input and output is done by reading or 

writing files, because all peripheral devices, even keyboard and screen, are files 
in the file system. This means that a single homogeneous interface handles all 
communication between a program and peripheral devices. 

In the most general case, before you read or write a file, you must inform 
the system of your intent to do so, a process called opening the file. If you are 
going to write on a file it may also be necessary to create it or to discard its pre-
vious contents. The system checks your right to do so (Does the file exist? Do 

169 



170 THE UNIX SYSTEM INTERFACE CHAPTER 8 

you have permission to access it?), and if all is well, returns to the program a 
small non-negative integer called a file descriptor. Whenever input or output is 
to be done on the file, the file descriptor is used instead of the name to identify 
the file. (A file descriptor is analogous to the file pointer used by the standard 
library, or to the file handle of MS-DOS.) All information about an open file is 
maintained by the system; the user program refers to the file only by the file 
descriptor. 

Since input and output involving keyboard and screen is so common, special 
arrangements exist to make this convenient. When the command interpreter 
(the "shell") runs a program, three files are open, with file descriptors 0, 1, and 
2, called the standard input, the standard output, and the standard error. If a 
program reads 0 and writes 1 and 2, it can do input and output without worry-
ing about opening files. 

The user of a program can redirect 1/0 to and from files with < and >: 
prog <infile >outfile 

In this case, the shell changes the default assignments for file descriptors 0 and 
1 to the named files. Normally file descriptor 2 remains attached to the screen, 
so error messages can go there. Similar observations hold for input or output 
associated with a pipe. In all cases, the file assignments are changed by the 
shell, not by the program. The program does not know where its input comes 
from nor where its output goes, so long as it uses file 0 for input and 1 and 2 for 
output. 

8.2 Low Leveii/0-Read and Write 
Input and output uses the read and write system calls, which are accessed 

from C programs through two functions called read and write. For both, the 
first argument is a file descriptor. The second argument is a character array in 
your program where the data is to go to or come from. The third argument is 
the number of bytes to be transferred. 

int n_read = read(int fd, char *buf, int n); 
int n_written = write(int fd, char *buf, int n); 

Each call returns a count of the number of bytes transferred. On reading, the 
number of bytes returned may be less than the number requested. A return 
value of zero bytes implies end of file, and -1 indicates an error of some sort. 
For writing, the return value is the number of bytes written; an error has 
occurred if this isn't equal to the number requested. 

Any number of bytes can be read or written in one call. The most common 
values are 1, which means one character at a time ("unbuffered"), and a 
number like 1024 or 4096 that corresponds to a physical block size on a peri-
pheral device. Larger sizes will be more efficient because fewer system calls 



SECTION 8.2 LOW LEVEL I/O-READ AND WRITE 171 

will be made. 
Putting these facts together, we can write a simple program to copy its input 

to its output, the equivalent of the file copying program written for Chapter 1. 
This program will copy anything to anything, since the input and output can be 
redirected to any file or device. 

#include "syscalls.h" 

main() /*copy input to output*/ 
{ 

} 

char buf[BUFSIZ]; 
int n; 

while ((n = read(O, buf, BUFSIZ)) > 0) 
write(1, buf, n); 

return 0; 

We have collected function prototypes for the system calls into a file called 
syscalls. h so we can include it in the programs of this chapter. This name 
is not standard, however. 

The parameter BUFSIZ is also defined in syscalls. h; its value is a good 
size for the local system. If the file size is not a multiple of BUFSIZ, some 
read will return a smaller number of bytes to be written by write; the next 
call to read after that will return zero. 

It is instructive to see how read and write can be used to construct 
higher-level routines like getchar, putchar, etc. For example, here is a ver-
sion of getchar that does unbuffered input, by reading the standard input one 
character at a time. 

#include "syscalls.h" 

/* getchar: unbuffered single character input */ 
int getchar(void) 
{ 

char c; 

return (read(O, &c, 1) == 1) ? (unsigned char) c EOF; 
} 

c must be a char, because read needs a character pointer. Casting c to 
unsigned char in the return statement eliminates any problem of sign exten-
sion. 

The second version of getchar does input in big chunks, and hands out the 
characters one at a time. 



172 THE UNIX SYSTEM INTERFACE 

#include "syscalls.h" 

/* getchar: simple buffered version */ 
int getchar(void) 
{ 

static char buf[BUFSIZ]; 
static char *bufp = buf; 
static int n = 0; 

if (n == 0) { /* buffer is empty */ 
n = read(O, buf, sizeof buf); 
bufp = buf; 

} 

CHAPTER 8 

return (--n >= 0) ? (unsigned char) *bufp++ : EOF; 
} 

If these versions of qetchar were to be compiled with <stdio. h> included, it 
would be necessary to #undef the name qetchar in case it is implemented as 
a macro. 

8.3 Open, Creat, Close, Unlink 
Other than the default standard input, output and error, you must explicitly 

open files in order to read or write them. There are two system calls for this, 
open and ere at [sicl. 

open is rather like the £open discussed in Chapter 7, except that instead of 
returning a file pointer, it returns a file descriptor, which is just an int. open 
returns - 1 if any error occurs. 

#include <fcntl.h> 

int fd; 
int open(char •name, int flags, int perms); 

fd • open(name, flags, perms); 

As with £open, the name argument is a character string containing the 
filename. The second argument, flaqs, is an int that specifies how the file is 
to be opened; the main values are 

o_RDONLY open for reading only 
o_WRONLY open for writing only 
o_RDWR open for both reading and writing 

These constants are defined in <fcntl. h> on System V UNIX systems, and in 
<sys/file. h> on Berkeley (BSD) versions. 

To open an existing file for reading, 
fd = open(name, O_RDONLY, 0); 



SECTION 8.3 OPEN, CREAT, CLOSE, UNLINK 173 

The perms argument is always zero for the uses of open that we will discuss. 
It is an error to try to open a file that does not exist. The system call 

creat is provided to create new files, or to re-write old ones. 
int creat(char *name, int perms); 

fd = creat(name, perms); 

returns a file descriptor if it was able to create the file, and -1 if not. If the 
file already exists, creat will truncate it to zero length, thereby discarding its 
previous contents; it is not an error to creat a file that already exists. 

If the file does not already exist, ere at creates it with the permissions 
specified by the perms argument. In the UNIX file system, there are nine bits 
of permission information associated with a file that control read, write and exe-
cute access for the owner of the file, for the owner's group, and for all others. 
Thus a three-digit octal number is convenient for specifying the permissions. 
For example, 0755 specifies read, write and execute permission for the owner, 
and read and execute permission for the group and everyone else. 

To illustrate, here is a simplified version of the UNIX program cp, which 
copies one file to another. Our version copies only one file, it does not permit 
the second argument to be a directory, and it invents permissions instead of 
copying them. 

#include <stdio.h> 
#include <fcntl.h> 
#include "syscalls.h" 
#define PERMS 0666 /* RW for owner, group, others */ 

void error(char *• ... ); 

/* cp: copy f1 to f2 */ 
main(int argc, char *argv[]) 
{ 

} 

int f1, f2, n; 
char buf[BUFSIZ]; 

if (argc I= 3) 
error ( "Usage: cp from to" ) ; 

if ((f1 = open(argv(1], O_RDONLY, 0)) == -1) 
error("cp: can't open "s", argv[1]); 

if ((f2 = creat(argv[2], PERMS)) == -1) 
error("cp: can't create "s, mode "03o", 

argv[ 2], PERMS); 
while ((n = read(f1, buf, BUFSIZ)) > 0) 

if (write(f2, buf, n) I= n) 
error("cp: write error on file "s", argv[2]); 

return 0; 

This program creates the output file with fixed permissions of 0666. With the 



174 THE UNIX SYSTEM INTERFACE CHAPTER 8 

stat system call, described in Section 8.6, we can determine the mode of an 
existing file and thus give the same mode to the cqpy. 

Notice that the function error is called with variable argument lists much 
like printf. The implementation of error illustrates how to use another 
member of the printf family. The standard library function vprintf is like 
printf except that the variable argument list is replaced by a single argument 
that has been initialized by calling the va_start macro. Similarly, 
vfprintf and vsprintf match fprintf and sprintf. 

#include <stdio.h> 
#include <stdarg.h> 

I• error: print an error message and die •I 
void error(char •fmt, ... ) 
{ 

} 

va_list args; 

va_start(args, fmt); 
fprintf(stderr, "error: "); 
vfprintf(stderr, fmt, args); 
fprintf ( stderr, "\n" ) ; 
va_end(args); 
exit( 1); 

There is a limit (often about 20) on the number of files that a program may 
have open simultaneously. Accordingly, any program that intends to process 
many files must be prepared to re-use file descriptors. The function 
close ( int fd) breaks the connection between a file descriptor and an open 
file, and frees the file descriptor for use with some other file; it corresponds to 
fclose in the standard library except that there is no buffer to flush. Termi-
nation of a program via exit or return from the main program closes all open 
files. 

The function unlink ( char •name ) removes the file name from the file 
system. It corresponds to the standard library function remove. 

Exercise 8-1. Rewrite the program cat from Chapter 7 using read, write, 
open and close instead of their standard library equivalents. Perform experi-
ments to determine the relative speeds of the two versions. D 

8.4 Random Access-Lseek 
Input and output are normally sequential: each read or write takes place 

at a position in the file right after the previous one. When necessary, however, 
a file can be read or written in any arbitrary order. The system call lseek 
provides a way to move around in a file without reading or writing any data: 



SECTION 8.5 EXAMPLE-AN IMPLEMENTATION OF FOPEN AND GETC 175 

long lseek(int fd, long offset, int origin); 

sets the current position in the file whose descriptor is fd to offset, which is 
taken relative to the location specified by origin. Subsequent reading or writ-
ing will begin at that position. origin can be 0, 1, or 2 to specify that 
offset is to be measured from the beginning, from the current position, or 
from the end of the file respectively. For example, to append to a file (the 
redirection > > in the UNIX shell, or 11 a 11 for f open), seek to the end before 
writing: 

lseek(fd, OL, 2); 

To get back to the beginning ("rewind"), 
lseek(fd, OL, 0); 

Notice the OL argument; it could also be written as (long) 0 or just as 0 if 
lseek is properly declared. 

With lseek, it is possible to treat files more or less like large arrays, at the 
price of slower access. For example, the following function reads any number of 
bytes from any arbitrary place in a file. It returns the number read, or -1 on 
error. 

#include "syscalls.h" 

/* get: read n bytes from position pos */ 
int get(int fd, long pos, char *buf, int n) 
{ 

} 

if (lseek(fd, pos, 0) >= 0) /* get to pos */ 
return read(fd, buf, n); 

else 
return -1; 

The return value from lseek is a long that gives the new position in the file, 
or -1 if an error occurs. The standard library function fseek is similar to 
lseek except that the first argument is a FILE * and the return is non-zero if 
an error occurred. 

8.5 Example-An Implementation of Fopen and Gate 
Let us illustrate how some of these pieces fit together by showing an imple-

mentation of the standard library routines fopen and getc. 
Recall that files in the standard library are described by file pointers rather 

than file descriptors. A file pointer is a pointer to a structure that contains 
several pieces of information about the file: a pointer to a buffer, so the file can 
be read in large chunks; a count of the number of characters left in the buffer; a 
pointer to the next character position in the buffer; the file descriptor; and flags 
describing read/write mode, error status, etc. 



176 THE UNIX SYSTEM INTERFACE CHAPTER 8 

The data structure that describes a file is contained in <stdio. h>, which 
must be included (by #include) in any source file that uses routines from the 
standard input/output library. It is also included by functions in that library. 
In the following excerpt from a typical <stdio. h>, names that are intended 
for use only by functions of the library begin with an underscore so they are less 
likely to collide with names in a user's program. This convention is used by all 
standard library routines. 

#define NULL 0 
#define EOF ( -1) 
#define BUFSIZ 1024 
#define OPEN_MAX 20 /* max #files open at once */ 

typedef struct iobuf { 
int cnt; /* characters left */ 
char *Ptr; /* next character position 
char *base; /* location of buffer */ 
int flag; /* mode of file access *I 
int fd; /* file descriptor */ 

} FILE; 
extern FILE _iob[OPEN_MAX]; 

#de'fine stdin 
#define stdout 
#define stderr 

enum _flags { 
READ = -WRITE = -
UNBUF = -EOF = 

(&._iob[O]) 
(&._iob[1]) 
(&._iob[2]) 

01, /* file 
02, /* file 
04, /* file 

open for reading *I 
open for writing *I 
is unbuffered */ 

010, /* EOF has occurred on this 

*I 

file */ 
ERR = 020 /* error occurred on this file */ 

} ; 

int _fillbuf(FILE *); 
int _flushbuf(int, FILE*); 

#define feof(p) 
#define ferror(p) 
#define fileno(p) 

( ( (p)->flag &. _EOF) I= 0) 
(((p)->flag &. _ERR) I= 0) 
( (p) ->fd) 

#define getc(p) (--(p)->cnt >= 0 \ 
? (unsigned char) *(p)->ptr++ : _fillbuf(p)) 

#define putc(x,p) (--(p)->cnt >= 0 \ 
? *(P)->ptr++ = (x) : _flushbuf((x),p)) 

#define getchar() 
#define putchar(x) 

getc(stdin) 
putc((x), stdout) 

The getc macro normally decrements the count, advances the pointer, and 



SECTION 8.5 EXAMPLE-AN IMPLEMENTATION OF FOPEN AND GETC 177 

returns the character. (Recall that a long #define is continued with a 
backslash.) If the count goes negative, however, getc calls the function 
_ f i llbuf to replenish the buffer, re-initialize the structure contents, and 
return a character. The characters are returned unsigned, which ensures that 
all characters will be positive. 

Although we will not discuss any details, we have included the definition of 
putc to show that it operates in much the same way as getc, calling a func-
tion _flushbuf when its buffer is full. We have also included macros for 
accessing the error and end-of-file status and the file descriptor. 

The function fopen can now be written. Most of fopen is concerned with 
getting the file opened and positioned at the right place, and setting the flag bits 
to indicate the proper state. fopen does not allocate any buffer space; this is 
done by _fillbuf when the file is first read. 

#include <fcntl.h> 
#include "syscalls.h" 
#define PERMS 0666 /* RW for owner, group, others */ 

/* fopen: open file, return file ptr */ 
FILE *fopen(char *name, char *mode) 
{ 

} 

int fd; 
FILE *fp; 

if (*mode I= 'r' && *mode I= 'w' && *mode I= 'a') 
return NULL; 

for (fp = _iob; fp < _iob + OPEN_MAX; fp++) 
if ((fp->flag & (_READ : _WRITE)) == 0) 

break; /* found free slot */ 
if (fp >= iob + OPEN_MAX) /* no free slots */ 

return NULL; 

if (*mode== 'w') 
fd = creat(name, PERMS); 

else if (*mode== 'a') { 
if ((fd = open(name, O_WRONLY, 0)) == -1) 

fd = creat(name, PERMS); 
lseek(fd, OL, 2); 

} else 
fd = open(name, O_RDONLY, 0); 

if (fd == -1) /* couldn't access name */ 
return NULL; 

fp->fd = fd; 
fp->cnt = 0; 
fp->base = NULL; 
fp->flag = (*mode== 'r') ? _READ 
return fp; 

_WRITE; 

This version of fopen does not handle all of the access mode possibilities of the 



178 THE UNIX SYSTEM INTERFACE CHAPTER 8 

standard, though adding them would not take much code. In particular, our 
fopen does not recognize the "b" that signals binary access, since that is 
meaningless on UNIX systems, nor the"+" that permits both reading and writ-
ing. 

The first call to getc for a particular file finds a count of zero, which forces 
a call of _fillbuf. If _fillbuf finds that the file is not open for reading, it 
returns EOF immediately. Otherwise, it tries to allocate a buffer (if reading is 
to be buffered). 

Once the buffer is established, _fillbuf calls read to fill it, sets the count 
and pointers, and returns the character at the beginning of the buffer. Subse-
quent calls to _fillbuf will find a buffer allocated. 

#include "syscalls.h" 

/* fillbuf: allocate and fill input buffer */ 
int _fillbuf(FILE *fp) 
{ 

} 

int bufsize; 

if ((fp->flag&(_READI_EOFI_ERR)) I= _READ) 
return EOF; 

bufsize = (fp->flag & _UNBUF) ? 1 : BUFSIZ; 
if (fp->base == NULL) /* no buffer yet */ 

if ((fp->base = (char*) malloc(bufsize)) ==NULL) 
return EOF; /* can't get buffer */ 

fp->ptr = fp->base; 
fp->cnt = read(fp->fd, fp->ptr, bufsize); 
if (--fp->cnt < 0) { 

} 

if (fp->cnt == -1) 
fp->flag I= _EOF; 

else 
fp->flag I= _ERR; 

fp->cnt = 0; 
return EOF; 

return (unsigned char) *fp->ptr++; 

The only remaining loose end is how everything gets started. The array 
_iob must be defined and initialized for stdin, stdout and stderr: 

FILE _iob[OPEN_MAX] = { /* stdin, stdout, stderr: */ 
{ 0, (char*) 0, (char*) 0, _READ, 0 }, 
{ 0, (char*) 0, (char*) 0, _WRITE, 1 }, 
{ 0, (char *) 0, (char *) 0, _WRITE I _UNBUF, 2 } 

} ; 

The initialization of the flag part of the structure shows that stdin is to be 
read, stdout is to be written, and stderr is to be written unbuffered. 

Exercise 8-2. Rewrite fopen and _fillbuf with fields instead of explicit bit 



SECTION 8.6 EXAMPLE-LISTING DIRECTORIES 179 

operations. Compare code size and execution speed. D 

Exercise 8-3. Design and write _flushbuf, £flush, and £close. D 

Exercise 8-4. The standard library function 
int fseek(FILE *fp, long offset, int origin) 

is identical to lseek except that fp is a file pointer instead of a file descriptor 
and the return value is an int status, not a position. Write £seek. Make sure 
that your £seek coordinates properly with the buffering done for the other 
functions of the library. D 

8.6 Example-Listing Directories 
A different kind of file system interaction is sometimes called for-

determining information about a file, not what it contains. A directory-listing 
program such as the UNIX command ls is an example-it prints the names of 
files in a directory, and, optionally, other information, such as sizes, permissions, 
and so on. The MS-DOS dir command is analogous. 

Since a UNIX directory is just a file, ls need only read it to retrieve the 
filenames. But it is necessary to use a system call to access other information 
about a file, such as its size. On other systems, a system call may be needed 
even to access filenames; this is the case on MS-DOS, for instance. What we 
want is provide access to the information in a relatively system-independent 
way, even though the implementation may be highly system-dependent. 

We will illustrate some of this by writing a program called £size. £size 
is a special form of ls that prints the sizes of all files named in its command-
line argument list. If one of the files is a directory, £size applies itself recur-
sively to that directory. If there are no arguments at all, it processes the 
current directory. 

Let us begin with a short review of UNIX file system structure. A directory 
is a file that contains a list of filenames and some indication of where they are 
located. The "location" is an index into another table called the "inode list." 
The inode for a file is where all information about a file except its name is kept. 
A directory entry generally consists of only two items, the filename and an 
inode number. 

Regrettably, the format and precise contents of a directory are not the same 
on all versions of the system. So we will divide the task into two pieces to try to 
isolate the non-portable parts. The outer level defines a structure called a 
Dirent and three routines opendir, readdir, and closedir to provide 
system-independent access to the name and inode number in a directory entry. 
We will write £size with this interface. Then we will show how to implement 
these on systems that use the same directory structure as Version 7 and System 
V UNIX; variants are left as exercises. 



180 THE UNIX SYSTEM INTERFACE CHAPTER 8 

The Dirent structure contains the inode number and the name. The max-
imum length of a filename component is NAME_MAX, which is a system-
dependent value. opendir returns a pointer to a structure called DIR, analo-
gous to FILE, which is used by readdir and closedir. This information is 
collected into a file called dirent. h. 

#define NAME_MAX 14 /* longest filename component; */ 
/* system-dependent */ 

typedef struct { 
long ino; 

/* portable directory entry: */ 
I* inode number */ 

char name[NAME_MAX+1]; 
} Dirent; 

/* name + '\0' terminator */ 

typedef struct { 
int fd; 
Dirent d; 

} DIR; 

/* minimal DIR: no buffering, etc. */ 
/* file descriptor for directory */ 
/* the directory entry */ 

DIR *Opendir(char *dirname); 
Dirent *readdir(DIR *dfd); 
void closedir(DIR *dfd); 

The system call stat takes a filename and returns all of the information in 
the inode for that file, or -1 if there is an error. That is, 

char *name; 
struct stat stbuf; 
int stat(char *• struct stat *l; 

stat(name, &stbuf); 

fills the structure stbuf with the inode information for the file name. The 
structure describing the value returned by stat is in <sys/stat. h>, and typ-
ically looks like this: 

struct stat /* inode information returned by stat *I 
{ 

dev_t st_dev; /* device of inode *I 
ino_t st _ino; /* inode number *I 
short st_mode; /* mode bits *I 
short st_nlink; /* number of links to file *I 
short st_uid; /* owner's user id *I 
short st_gid; /* owner's group id */ 
dev_t st_rdev; /* for special files *I 
off -t st_size; /* file size in characters *I 
time -t st_atime; /* time last accessed */ 
time_t st_mtime; /* time last modified *I 
time -t st_ctime; /* time inode last changed *I 

} ; 

Most of these values are explained by the comment fields. The types like 



SECTION 8.6 EXAMPLE-LISTING DIRECTORIES 181 

dev _ t and ino_ t are defined in <sys/types. h>, which must be included 
too. 

The st_mode entry contains a set of flags describing the file. The flag 
definitions are also included in <sys/stat. h>; we need only the part that 
deals with file type: 

#define S_IFMT 0160000 /* type of file: *I 
#define S_IFDIR 0040000 /* directory */ 
#define S_IFCHR 0020000 /* character special *I 
#define S_IFBLK 0060000 /* block special */ 
#define S_IFREG 0100000 /* regular */ 

/* ... *I 

Now we are ready to write the program £size. If the mode obtained from 
stat indicates that a file is not a directory, then the size is at hand and can be 
printed directly. If the file is a directory, however, then we have to process that 
directory one file at a time; it may in turn contain sub-directories, so the process 
is recursive. 

The main routine deals with command-line arguments; it hands each argu-
ment to the function £size. 

#include <stdio.h> 
#include <strinq.h> 
#include "syscalls.h" 
#include <fcntl.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include "dirent.h" 

void fsize(char *); 

/* flags for read and write */ 
/* typedefs */ 
/* structure returned by stat */ 

/* print file sizes */ 
main(int arqc, char **arqv) 
{ 

} 

if (arqc == 1) 
fsize("."); 

else 

/* default: current directory */ 

while (--arqc > 0) 
fsize ( *++arqv) ; 

return 0; 

The function £size prints the size of the file. If the file is a directory, 
however, £size first calls dirwalk to handle all the files in it. Note how the 
flag names s_IFMT and S_IFDIR from <sys/stat. h> are used to decide if 
the file is a directory. Parenthesization matters, because the precedence of & is 
lower than that of ==. 



182 THE UNIX SYSTEM INTERFACE CHAPTER 8 

int stat(char *• struct stat •); 
void dirwalk(char *• void (•fcn)(char •>>; 
I• fsize: print size of file "name" •I 
void fsize(char •name) 
{ 

} 

struct stat stbuf; 

if (stat(name, &stbuf) == -1) { 
fprintf(stderr, "fsize: can't access %s\n", name); 
return; 

} 
if ((stbuf.st_mode & S_IFMT) == S_IFDIR) 

dirwalk(name, fsize); 
printf("%8ld %s\n", stbuf.st_size, name); 

The function dirwalk is a general routine that applies a function to each 
file in a directory. It opens the directory, loops through the files in it, calling 
the function on each, then closes the directory and returns. Since fsize calls 
dirwalk on each directory, the two functions call each other recursively. 

#define MAX.PATH 1024 

I• dirwalk: apply fen to all files in dir •I 
void dirwalk(char •dir, void (•fcn)(char •>> 
{ 

} 

char name[MAX_PATH]; 
Dirent •dt:>; 
DIR •dfd; 

if ((dfd = opendir(dir)) ==NULL) { 
fprintf(stderr, "dirwalk: can't open %s\n", dir); 
return; 

} 
while ((dp = readdir(dfd)) I= NULL) { 

if (strcmp(dp->name, ".") == 0 
:: strcmp(dp->name, " .• ") == 0) 

continue; I• skip self and parent •I 
if (strlen(dir)+strlen(dp->name)+2 > sizeof(name)) 

fprintf(stderr, "dirwalk: name %sl%s too long\n", 
dir , dp- >name ) ; 

else { 

} 

sprintf(name, "%sl%s", dir, dp->name); 
(•fen) (name); 

} 
closedir(dfd); 

Each call to readdir returns a pointer to information for the next file, or 



SECTION 8.6 EXAMPLE-LISTING DIRECTORIES 183 

NULL when there are no files left. Each directory always contains entries for 
itself, called 11 • 11 , and its parent, 11 •• "; these must be skipped, or the program 
will loop forever. 

Down to this level, the code is independent of how directories are formatted. 
The next step is to present minimal versions of opendir, readdir, and 
closedir for a specific system. The following routines are for Version 7 and 
System V UNIX systems; they use the directory information in the header 
<sys/dir. h>, which looks like this: 

#ifndef DIRSIZ 
#define DIRSIZ 14 
#endif 
struct direct 
{ 

/* directory entry */ 

ino_t d_ino; /* inode number */ 
char d_name[DIRSIZ]; /*long name does not have #\0' */ 

} ; 

Some versions of the system permit much longer names and have a more com-
plicated directory structure. 

The type ino _ t is a type de£ that describes the index into the inode list. 
It happens to be unsigned short on the system we use regularly, but this is 
not the sort of information to embed in a program; it might be different on a 
different system, so the typedef is better. A complete set of "system" types is 
found in <sys/types. h>. 

opendir opens the directory, verifies that the file is a directory (this time 
by the system call fstat, which is like stat except that it applies to a file 
descriptor), allocates a directory structure, and records the information: 

int fstat(int fd, struct stat*); 

/* opendir: open a directory for readdir calls */ 
DIR *Opendir(char *dirname) 
{ 

} 

int fd; 
struct stat stbuf; 
DIR *dp; 

if ((fd = open(dirname, O_RDONLY, 0)) == -1 
l l fstat(fd, &stbuf) == -1 
l l (stbuf.st_mode & S_IFMT) I= S_IFDIR 
l I (dp = (DIR *) malloc(sizeof(DIR))) ==NULL) 

return NULL; 
dp->fd = fd; 
return dp; 

closedir closes the directory file and frees the space: 



184 THE UNIX SYSTEM INTERFACE CHAPTER 8 

I* closedir: close directory opened by opendir */ 
void closedir(DIR *dp) 
{ 

} 

if (dp) { 
close(dp->fd); 
free(dp); 

} 

Finally, readdir uses read to read each directory entry. If a directory 
slot is not currently in use (because a file has been removed), the inode number 
is zero, and this position is skipped. Otherwise, the inode number and name are 
placed in a static structure and a pointer to that is returned to the user. 
Each call overwrites the information from the previous one. 

#include <sys/dir.h> /* local directory structure */ 

I* readdir: read directory entries in sequence */ 
Dirent *readdir(DIR *dp) 
{ 

} 

struct direct dirbuf; /* local directory structure */ 
static Dirent d; /* return: portable structure */ 

while (read(dp->fd, (char*) &dirbuf, sizeof(dirbuf)) 
== sizeof(dirbuf)) { 

} 

if (dirbuf.d_ino == 0) /* slot not in use */ 
continue; 

d.ino = dirbuf.d_ino; 
strncpy(d.name, dirbuf.d_name, DIRSIZ); 
d.name[DIRSIZ] = '\0'; /*ensure termination*/ 
return &d; 

return NULL; 

Although the fsize program is rather specialized, it does illustrate a couple 
of important ideas. First, many programs are not "system programs"; they 
merely use information that is maintained by the operating system. For such 
programs, it is crucial that the representation of the information appear only in 
standard headers, and that programs include those files instead of embedding 
the declarations in themselves. The second observation is that with care it is 
possible to create an interface to system-dependent objects that is itself rela-
tively system-independent. The functions of the standard library are good 
examples. 

Exercise 8-5. Modify the fsize program to print the other information con-
tained in the inode entry. D 



SECTION 8.7 EXAMPLE-A STORAGE ALLOCATOR 185 

8.7 Example-A Storage Allocator 
In Chapter 5, we presented a very limited stack-oriented storage allocator. 

The version that we will now write is unrestricted. Calls to malloc and free 
may occur in any order; malloc calls upon the operating system to obtain more 
memory as necessary. These routines illustrate some of the considerations 
involved in writing machine-dependent code in a relatively machine-independent 
way, and also show a real-life application of structures, unions and typedef. 

Rather than allocating from a compiled-in fixed-sized array, malloc will 
request space from the operating system as needed. Since other activities in the 
program may also request space without calling this allocator, the space that 
malloc manages may not be contiguous. Thus its free storage is kept as a list 
of free blocks. Each block contains a size, a pointer to the next block, and the 
space itself. The blocks are kept in order of increasing storage address, and the 
last block (highest address) points to the first. 
free 

I . 1Vfr=1 . 1· Jl I · T4'crl 
.__ _ _.I free, owned by malloc 

I in use I in use, owned by malloc 

1: : : : : : : I not owned by malloc 

When a request is made, the free list is scanned until a big-enough block is 
found. This algorithm is called "first fit," by contrast with "best fit," which 
looks for the smallest block that will satisfy the request. If the block is exactly 
the size requested it is unlinked from the list and returned to the user. If the 
block is too big, it is split, and the proper amount is returned to the user while 
the residue remains on the free list. If no big-enough block is found, another 
large chunk is obtained from the operating system and linked into the free list. 

Freeing also causes a search of the free list, to find the proper place to insert 
the block being freed. If the block being freed is adjacent to a free block on 
either side, it is coalesced with it into a single bigger block, so storage does not 
become too fragmented. Determining adjacency is easy because the free list is 
maintained in order of increasing address. 

One problem, which we alluded to in Chapter 5, is to ensure that the storage 
returned by malloc is aligned properly for the objects that will be stored in it. 
Although machines vary, for each machine there is a most restrictive type: if the 
most restrictive type can be stored at a particular address, all other types may 
be also. On some machines, the most restrictive type is a double; on others, 
int or long suffices. 



186 THE UNIX SYSTEM INTERFACE CHAPTER 8 

A free block contains a pointer to the next block in the chain, a record of the 
size of the block, and then the free space itself; the control information at the 
beginning is called the "header." To simplify alignment, all blocks are multi-
ples of the header size, and the header is aligned properly. This is achieved by 
a union that contains the desired header structure and an instance of the most 
restrictive alignment type, which we have arbitrarily made a long: 

typedef long Align; /* for alignment to long boundary */ 

union header { /* block header: */ 

} ; 

struct { 
union header *Ptr; /* next block if on free list */ 
unsigned size; /* size of this block */ 

} s; 
Align x; /* force alignment of blocks */ 

typedef union header Header; 

The Align field is never used; it just forces each header to be aligned on a 
worst-case boundary. 

In malloc, the requested size in characters is rounded up to the proper 
number of header-sized units; the block that will be allocated contains one more 
unit, for the header itself, and this is the value recorded in the size field of the 
header. The pointer returned by malloc points at the free space, not at the 
header itself. The user can do anything with the space requested, but if any-
thing is written outside of the allocated space the list is likely to be scrambled. 

---· points to next free block 

I tf .. l 
L___ address returned to user 

A block returned by malloc 

The size field is necessary because the blocks controlled by malloc need not be 
contiguous-it is not possible to compute sizes by pointer arithmetic. 

The variable base is used to get started. If freep is NULL, as it is at the 
first call of malloc, then a degenerate free list is created; it contains one block 
of size zero, and points to itself. In any case, the free list is then searched. The 
search for a free block of adequate size begins at the point (freep) where the 
last block was found; this strategy helps keep the list homogeneous. If a too-big 
block is found, the tail end is returned to the user; in this way the header of the 
original needs only to have its size adjusted. In all cases, the pointer returned to 
the user points to the free space within the block, which begins one unit beyond 
the header. 



SECTION 8.7 EXAMPLE-A STORAGE ALLOCATOR 187 

static Header base; 
static Header *freep 

I* empty list to get started */ 
= NULL; /* start of free list */ 

I* malloc: general-purpose storage allocator */ 
void *malloc(unsigned nbytes) 
{ 

} 

Header *P• *Prevp; 
Header *morecore(unsigned); 
unsigned nunits; 

nunits = (nbytes+sizeof(Header)-1)/sizeof(Header) + 1; 
if ((prevp = freep) ==NULL) { /*no free list yet*/ 

base.s.ptr = freep = prevp = &base; 
base.s.size = 0; 

} 
for (p 

if 
= prevp->s.ptr; ; prevp = 
(p->s.size >= nunits) { 

p, p = p->s.ptr) { 
/* big enough */ 

I* exactly */ 

} 

} 

if (p->s.size == nunits) 
prevp->s.ptr = p->s.ptr; 

else { /* allocate tail end */ 

} 

p->s.size -= nunits; 
p += p->s.size; 
p->s.size = nunits; 

freep = prevp; 
return (void *)(p+1); 

if (p == freep) /* wrapped around free list */ 
if ((p = morecore(nunits)) ==NULL) 

return NULL; /* none left */ 

The function morecore obtains storage from the operating system. The 
details of how it does this vary from system to system. Since asking the system 
for memory is a comparatively expensive operation, we don't want to do that on 
every call to malloc, so morecore requests at least NALLOC units; this larger 
block will be chopped up as needed. After setting the size field, morecore 
inserts the additional memory into the arena by calling free. 

The UNIX system call sbrk ( n) returns a pointer to n more bytes of 
storage. sbrk returns -1 if there was no space, even though NULL would have 
been a better design. The - 1 must be cast to char * so it can be compared 
with the return value. Again, casts make the function relatively immune to the 
details of pointer representation on different machines. There is still one 
assumption, however, that pointers to different blocks returned by sbrk can be 
meaningfully compared. This is not guaranteed by the standard, which permits 
pointer comparisons only within an array. Thus this version of malloc is port-
able only among machines for which general pointer comparison is meaningful. 



188 THE UNIX SYSTEM INTERFACE CHAPTER 8 

#define NALLOC 1024 /* minimum #units to request */ 

/* morecore: ask system for more memory */ 
static Header *morecore(unsigned nu) 
{ 

} 

char *CP, *Sbrk(int); 
Header *UP; 

if (nu < NALLOC) 
nu = NALLOC; 

cp = sbrk(nu * sizeof(Header)); 
if (cp == (char *) -1) /*no space at all */ 

return NULL; 
up = (Header *) cp; 
up->s.size = nu; 
free((void *)(up+1)); 
return freep; 

free itself is the last thing. It scans the free list, starting at freep, look-
ing for the place to insert the free block. This is either between two existing 
blocks or at one end of the list. In any case, if the block being freed is adjacent 
to either neighbor, the adjacent blocks are combined. The only troubles are 
keeping the pointers pointing to the right things and the sizes correct. 

/* free: put block ap in free list */ 
void free(void *ap) 
{ 

} 

Header *bp, *P; 

bp = (Header *)ap- 1; 
for (p = freep; l(bp > p 

if (p >= p->s.ptr && 
break; /* freed 

/* point to block header */ 
&& bp < p->s.ptr); p = p->s.ptr) 
(bp > p I I bp < p->s.ptr)) 
block at start or end of arena */ 

if (bp + bp->s.size == p->s.ptr) { /* join to upper nbr */ 
bp->s.size += p->s.ptr->s.size; 
bp->s.ptr = p->s.ptr->s.ptr; 

} else 
bp->s.ptr = p->s.ptr; 

if (p + p->s.size == bp) { /* join to lower nbr */ 
p->s.size += bp->s.size; 
p->s.ptr = bp->s.ptr; 

} else 
p->s.ptr = bp; 

freep = p; 

Although storage allocation is intrinsically machine-dependent, the code 
above illustrates how the machine dependencies can be controlled and confined 
to a very small part of the program. The use of typedef and union handles 



SECTION 8.7 EXAMPLE-A STORAGE ALLOCATOR 189 

alignment (given that sbrk supplies an appropriate pointer). Casts arrange 
that pointer conversions are made explicit, and even cope with a badly-designed 
system interface. Even though the details here are related to storage allocation, 
the general approach is applicable to other situations as well. 

Exercise 8-6. The standard library function calloc ( n, size) returns a 
poiHter to n objects of size size, with the storage initialized to zero. Write 
calloc, by calling malloc or by modifying it. 0 

Exercise 8-7. malloc accepts a size request without checking its plausibility; 
free believes that the block it is asked to free contains a valid size field. 
Improve these routines so they take more pains with error checking. 0 

Exercise 8-8 Write a routine bfree ( p, n) that will free an arbitrary block p 
of n characters into the free list maintained by malloc and free. By using 
bfree, a user can add a static or external array to the free list at any time. 0 





APPENDix A: Reference Manual 

A 1. Introduction 
This manual describes the C language specified by the draft submitted to ANSI on 

31 October, 1988, for approval as "American National Standard for Information 
Systems-Programming Language C, X3.159·1989." The manual is an interpretation of 
the proposed standard, not the Standard itself, although care has been taken to make it 
a reliable guide to the language. 

For the most part, this document follows the broad outline of the Standard, which in 
turn follows that of the first edition of this book, although the organization differs in 
detail. Except for renaming a few productions, and not formalizing the definitions of the 
lexical tokens or the preprocessor, the grammar given here for the language proper is 
equivalent to that of the Standard. 

Throughout this manual, commentary material is indented and written in 
smaller type, as this is. Most often these comments highlight ways in which 
ANSI Standard C differs from the language defined by the first edition of this 
book, or from refinements subsequently introduced in various compilers. 

A2. Lexical Conventions 
A program consists of one or more translation units stored in files. It is translated 

in several phases, which are described in §A 12. The first phases do low-level lexical 
transformations, carry out directives introduced by lines beginning with the # character, 
and perform macro definition and expansion. When the preprocessing of §A 12 is com-
plete, the program has been reduced to a sequence of tokens. 

A2.1 Tokens 

There are six classes of tokens: identifiers, keywords, constants, string literals, opera-
tors, and other separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and 
comments as described below (collectively, "white space") are ignored except as they 
separate tokens. Some white space is required to separate otherwise adjacent identifiers, 
keywords, and constants. 

191 



192 REFERENCE MANUAL APPENDIX A 

If the input stream has been separated into tokens up to a given character, the next 
token is the longest string of characters that could constitute a token. 

A2.2 Comments 

The characters /* introduce a comment, which terminates with the characters */. 
Comments do not nest, and they do not occur within string or character literals. 

A2.3 Identifiers 

An identifier is a sequence of letters and digits. The first character must be a letter; 
the underscore _ counts as a letter. Upper and lower case letters are different. Identi-
fiers may have any length, and for internal identifiers, at least the first 31 characters are 
significant; some implementations may make more characters significant. Internal iden-
tifiers include preprocessor macro names and all other names that do not have external 
linkage (§All.2). Identifiers with external linkage are more restricted: implementations ' 
may make as few as the first six characters as significant, and may ignore case distinc-
tions. 

A2.4 Keywords 

The following identifiers are reserved for use as keywords, and may not be used 
otherwise: 

auto double int struct 
break else long switch 
case enu.m register typedef 
char extern return union 
const float short unsigned 
continue for signed void 
default go to sizeof volatile 
do if static while 

Some implementations also reserve the words fortran and asm. 

A2.5 Constants 

The keywords const, signed, and volatile are new with the ANSI stand-
ard; enum and void are new since the first edition, but in common use; 
entry, formerly reserved but never used, is no longer reserved. 

There are several kinds of constants. Each has a data type; §A4.2 discusses the basic 
types. 

constant: 
integer-constant 
character-constant 
floating-constant 
enumeration-constant 



SECTION A2 LEXICAL CONVENTIONS 193 

A2.5. 1 Integer Constants 

An integer constant consisting of a sequence of digits is taken to be octal if it begins 
with 0 (digit zero), decimal otherwise. Octal constants do not contain the digits 8 or 9. 
A sequence of digits preceded by Ox or OX (digit zero) is taken to be a hexadecimal 
integer. The hexadecimal digits include a or A through f or F with values 10 through 
15. 

An integer constant may be suffixed by the letter u or U, to specify that it is 
unsigned. It may also be suffixed by the letter 1 or L to specify that it is long. 

The type of an integer constant depends on its form, value and suffix. (See §A4 for 
a discussion of types.) If it is unsuffixed and decimal, it has the first of these types in 
which its value can be represented: int, long int, unsigned long int. If it is 
unsuffixed octal or hexadecimal, it has the first possible of these types: int, unsigned 
int, long int, unsigned long int. If it is suffixed by u or U, then unsigned 
int, unsigned long int. If it is suffixed by 1 or L, then long int, unsigned 
long int. 

The elaboration of the types of integer constants goes considerably beyond the 
first edition, which merely caused large integer constants to be long. The u 
suffixes are new. 

A2.5.2 Character Constants 

A character constant is a sequence of one or more characters enclosed in single 
quotes, as in 'x'. The value of a character constant with only one character is the 
numeric value of the character in the machine's character set at execution time. The 
value of a multi-character constant is implementation-defined. 

Character constants do not contain the ' character or newlines; in order to represent 
them, and certain other characters, the following escape sequences may be used. 

newline NL (LF) "\n backslash "\ "\ "\ 
horizontal tab HT "\ t question mark ? "\? 
vertical tab VT "\ v single quote "\' 
backspace BS "\b double quote 11 "\ 11 

carriage return CR "\r octal number ooo "\ooo 
formfeed FF "\f hex number hh "\xhh 
audible alert BEL "\a 

The escape "\ooo consists of the backslash followed by 1, 2, or 3 octal digits, which are 
taken to specify the value of the desired character. A common example of this construc-
tion is "\0 (not followed by a digit), which specifies the character NUL. The escape 
"\xhh consists of the backslash, followed by x, followed by hexadecimal digits, which are 
taken to specify the value of the desired character. There is no limit on the number of 
digits, but the behavior is undefined if the resulting character value exceeds that of the 
larges"t character. For either octal or hexadecimal escape characters, if the implementa-
tion treats the char type as signed, the value is sign-extended as if cast to char type. 
If the character following the "\ is not one of those specified, the behavior is undefined. 

In some implementations, there is an extended set of characters that cannot be 
represented in the char type. A constant in this extended set is written with a preced-
ing L, for example L 'x ', and is called a wide character constant. Such a constant has 
type wchar _ t, an integral type defined in the standard header <stddef. h>. As with 



194 REFERENCE MANUAL APPENDIX A 

ordinary character constants, octal or hexadecimal escapes may be used; the effect is 
undefined if the specified value exceeds that representable with wchar _ t. 

Some of these escape sequences are new, in particular the hexadecimal charac-
ter representation. Extended characters are also new. The character sets com-
monly used in the Americas and western Europe can be encoded to fit in the 
char type; the main intent in adding wchar _ t was to accommodate Asian 
languages. 

A2.5.3 Floating Constants 

A floating constant consists of an integer part, a decimal point, a fraction part, an e 
or E, an optionally signed integer exponent and an optional type suffix, one of f, F, 1, or 
L. The integer and fraction parts both consist of a sequence of digits. Either the integer 
part or the fraction part (not both) may be missing; either the decimal point or the e 
and the exponent (not both) may be missing. The type is determined by the suffix; F or 
f makes it float, Lor 1 makes it long double; otherwise it is double. 

Suffixes on floating constants are new. 

A2.5.4 Enumeration Constants 

Identifiers declared as enumerators (see §A8.4) are constants of type int. 

A2.8 String Literals 

A string literal, also called a string constant, is a sequence of characters surrounded 
by double quotes, as in 11 ••• 11 • A string has type "array of characters" and storage 
class static (see §A4 below) and is initialized with the given characters. Whether 
identical string literals are distinct is implementation-defined, and the behavior of a pro-
gram that attempts to alter a string literal is undefined. 

Adjacent string literals are concatenated into a single string. After any concatena-
tion, a null byte \0 is appended to the string so that programs that scan the string can 
find its end. String literals do not contain newline or double-quote characters; in order 
to represent them, the same escape sequences as for character constants are available. 

As with character constants, string literals in an extended character set are written 
with a preceding L, as in L 11 ••• 11 • Wide-character string literals have type "array of 
wchar _ t." Concatenation of ordinary and wide string literals is undefined. 

The specification that string literals need not be distinct, and the prohibition 
against modifying them, are new in the ANSI standard, as is the concatenation 
of adjacent string literals. Wide-character string literals are new. 

A3. Syntax Notation 
In the syntax notation used in this manual, syntactic categories are indicated by 

italic type, and literal words and characters in typewriter style. Alternative 
categories are usually listed on separate lines; in a few cases, a long set of narrow alter-
natives is presented on one line, marked by the phrase "one of." An optional terminal or 
nonterminal symbol carries the subscript "opt," so that, for example, 



SECTION A4 MEANING OF IDENTIFIERS 195 

{ expressionopt } 
means an optional expression, enclosed in braces. The syntax is summarized in §A13. 

Unlike the grammar given in the first edition of this book, the one given here 
makes precedence and associativity of expression operators explicit. 

A4. Meaning of Identifiers 
Identifiers, or names, refer to a variety of things: functions; tags of structures, 

unions, and enumerations; members of structures or unions; enumeration constants; 
typedef names; and objects. An object, sometimes called a variable, is a location in 
storage, and its interpretation depends on two main attributes: its storage class and its 
type. The storage class determines the lifetime of the storage associated with the identi-
fied object; the type determines the meaning of the values found in the identified object. 
A name also has a scope, which is the region of the program in which it is known, and a 
linkage, which determines whether the same name in another scope refers to the same 
object or function. Scope and linkage are discussed in §A 11. 

A4. 1 Storage Class 

There are two storage classes: automatic and static. Several keywords, together with 
the context of an object's declaration, specify its storage class. Automatic objects are 
local to a block (§A9.3), and are discarded on exit from the block. Declarations within a 
block create automatic objects if no storage class specification is mentioned, or if the 
auto specifier is used. Objects declared registE;!r are automatic, anq are (if possible) 
stored in fast registers of the machine. 

Static objects may be local to a block or external to all blocks, but in either case 
retain their values across exit from and reentry to functions and blocks. Within a block, 
including a block that provides the code for a function, static objects are declared with 
the keyword static. The objects declared outside all blocks, at the same level as func-
tion definitions, are always static. They may be made local to a particular translation 
unit by use of the static keyword; this gives them internal linkage. They become glo-
bal to an entire program by omitting an explicit storage class, or by using the keyword 
extern; this gives them external linkage. 

A4.2 Basic Types 

There are several fundamental types. The standard header < 1 imi ts . h> described 
in Appendix B defines the largest and smallest values of each type in the local imple-
mentation. The numbers given in Appendix B show the smallest acceptable magnitudes. 

Objects declared as characters (char) are large enough to store any member of the 
execution character set. If a genuine character from that set is stored in a char object, 
its value is equivalent to the integer code for the character, and is non-negative. Other 
quantities may be stored into char variables, but the available range of values, and 
especially whether the value is signed, is implementation-dependent. 

Unsigned characters declared unsigned char consume the same amount of space 
as plain characters, but always appear non-negative; explicitly signed characters declared 
signed char likewise take the same space as plain characters. 



196 REFERENCE MANUAL APPENDIX A 

unsigned char type does not appear in the first edition of this book, but is in 
common use. signed char is new. 

Besides the char types, up to three sizes of integer, declared short int, int, and 
long int, are available. Plain int objects have the natural size suggested by the host 
machine architecture; the other sizes are provided to meet special needs. Longer 
integers provide at least as much storage as shorter ones, but the implementation may 
make plain integers equivalent to either short integers, or long integers. The int types 
all represent signed values unless specified otherwise. 

Unsigned integers, declared using the keyword unsigned, obey the laws of arith-
metic modulo 2" where n is the number of bits in the representation, and thus arithmetic 
on unsigned quantities can never overflow. The set of non-negative values that can be 
stored in a signed object is a subset of the values that can be stored in the corresponding 
unsigned object, and the representation for the overlapping values is the same. 

Any of single precision floating point (float), double precision floating point 
(double), and extra precision floating point (long double) may be synonymous, but 
the ones later in the list are at least as precise as those before. 

long double is new. The first edition made long float equivalent to 
double; the locution has been withdrawn. 

Enumerations are unique types that have integral values; associated with each 
enumeration is a set of named consta;ts (§A8.4). Enumerations behave like integers, 
but it is common for a compiler to issue a warning when an object of a particular 
enumeration type is assigned something other than one of its constants, or an expression 
of its type. 

Because objects of these types can be interpreted as numbers, they will be referred to 
as arithmetic types. Types char, and int of all sizes, each with or without sign, and 
also enumeration types, will collectively be called integral types. The types float, 
double, and long double will be called floating types. 

The void type specifies an empty set of values. It is used as the type returned by 
functions that generate no value. 

A4.3 Derived Types 

Besides the basic types, there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways: 

arrays of objects. of a given type; 
functions returning objects of a given type; 
pointers to objects of a given type; 
structures containing a sequence of objects of various types; 
unions capable of containing any one of several objects of various types. 

In general these methods of constructing objects can be applied recursively. 

A4.4 Type Qualifiers 

An object's type may have additional qualifiers. Declaring an object const 
announces that its value will not be changed; declaring it volatile announces that it 
has special properties relevant to optimization. Neither qualifier affects the range of 
values or arithmetic properties of the object. Qualifiers are discussed in §A8.2. 



SECTION A6 CONVERSIONS 197 

AS. Objects and Lvalues 
An object is a named region of storage; an /value is an expression referring to an 

object. An obvious example of an lvalue expression is an identifier with suitable type 
and storage class. There are operators that yield }values: for example, if E is an expres-
sion of pointer type, then *E is an lvalue expression referring to the object to which E 
points. The name "lvalue" comes from the assignment expression E 1 = E2 in which 
the left operand E 1 must be an lvalue expression. The discussion of each operator speci-
fies whether it expects lvalue operands and whether it yields an lvalue. 

A6. Conversions 
Some operators may, depending on their operands, cause conversion of the value of 

an operand from one type to another. This section explains the result to be expected 
from such conversions. §A6.5 summarizes the conversions demanded by most ordinary 
operators; it will be supplemented as required by the discussion of each operator. 

A6. 1 Integral Promotion 

A character, a short integer, or an integer bit-field, all either signed or not, or an 
object of enumeration type, may be used in an expression wherever an integer may be 
used. If an int can represent all the values of the original type, then the value is con-
verted to int; otherwise the value is converted to unsigned int. This process is 
called integral promotion. 

A6.2 Integral Conversions 

Any integer is converted to a given unsigned type by finding the smallest non-
negative value that is congruent to that integer, modulo one more than the largest value 
that can be represented in the unsigned type. In a two's complement representation, this 
is equivalent to left-truncation if the bit pattern of the unsigned type is narrower, and to 
zero-filling unsigned values and sign-extending signed values if the unsigned type is 
wider. 

When any integer is converted to a signed type, the value is unchanged if it can be 
represented in the new type and is implementation-defined otherwise. 

A6.3 Integer and Floating 

When a value of floating type is converted to integral type, the fractional part is dis-
carded; if the resulting value cannot be represented in the integral type, the behavior is 
undefined. In particular, the result of converting negative floating values to unsigned 
integral types is not specified. 

When a value of integral type is converted to floating, and the value is in the 
representable range but is not exactly representable, then the result may be either the 
next higher or next lower representable value. If the result is out of range, the behavior 
is undefined. 



198 REFERENCE MANUAL APPENDIX A 

A6.4 Floating Types 

When a less precise floating value is converted to an equally or more precise floating 
type, the value is unchanged. When a more precise floating value is converted to a less 
precise floating type, and the value is within representable range, the result may be 
either the next higher or the next lower representable value. If the result is out of range, 
the behavior is undefined. 

A6.5 Arithmetic Conversions 

Many operators cause conversions and yield result types in a similar way. The effect 
is to bring operands into a common type, which is also the type of the result. This pat-
tern is called the usual arithmetic conversions. 

First, if either operand is long double, the other is converted to long double. 
Otherwise, if either operand is double, the other is converted to double. 
Otherwise, if either operand is float, the other is converted to float. 
Otherwise, the integral promotions are performed on· both operands; then, if either 
operand is unsigned long int, the other is converted to unsigned long int. 
Otherwise, if one operand is long int and the other is unsigned int, the effect 
depends on whether a long int can represent all values of an unsigned int; if 
so, the unsigned int operand is converted to long int; if not, both are converted 
to unsigned long int. 
Otherwise, if one operand is long int, the other is converted to long int. 
Otherwise, if either operand is u:r;1signed int, the other is converted to unsigned 
int. 
Otherwise, both operands have type int. 

There are two changes here. First, arithmetic on float operands may be done 
in single precision, rather than double; the first edition specified that all floating 
arithmetic was double precision. Second, shorter unsigned types, when com-
bined with a larger signed type, do not propagate the unsigned property to the 
result type; in the first edition, the unsigned always dominated. The new rules 
are slightly more complicated, but reduce somewhat the surprises that may 
occur when an unsigned quantity meets signed. Unexpected results may still 
occur when an unsigned expression is compared to a signed expression of the 
same size. 

A6.6 Pointers and Integers 

An expression of integral type may be added to or subtracted from a pointer; in such 
a case the integral expression is converted as in the discussion of the addition 
operator (§A 7. 7). 

Two pointers to objects of the same type, in the same array, may be subtracted; the 
result is converted to an integer as specified in the discussion of the subtraction operator 
(§A7.7). 

An integral constant expression with value 0; or such an expression cast to type 
void *• may be converted, by a cast, by assignment, or by comparison, to a .pointer of 
any type. This produces a null pointer that is equal to another null pointer of the same 
type, but unequal to any pointer to a function or object. 

Certain other conversions involving pointers are permitted, but have implementation-
dependent aspects. They must be specified by an explicit type-conversion operator, or 



SECTION A6 CONVERSIONS 199 

cast (§§A7.5 and A8.8). 
A pointer may be converted to an integral type large enough to hold it; the required 

size is implementation-dependent. The mapping function is also implementation-
dependent. 

An object of integral type may be explicitly converted to a pointer. The mapping 
always carries a sufficiently wide integer converted from a pointer back to the same 
pointer, but is otherwise implementation-dependent. 

A pointer to one type may be converted to a pointer to another type. The resulting 
pointer may cause addressing exceptions if the subject pointer does not refer to an object 
suitably aligned in storage. It is guaranteed that a pointer to an object may be con-
verted to a pointer to an object whose type requires less or equally strict storage align-
ment and back again without change; the notion of "alignment" is implementation-
dependent, but objects of the char types have least strict alignment requirements. As 
described in §A6.8, a pointer may also be converted to type void * and back again 
without change. 

A pointer may be converted to another pointer whose type is the same except for the 
addition or removal of qualifiers (§§A4.4, A8.2) of the object type to which the pointer 
refers. If qualifiers are added, the new pointer is equivalent to the old except for restric-
tions implied by the new qualifiers. If qualifiers are removed, operations on the underly-
ing object remain subject to the qualifiers in its actual declaration. 

Finally, a pointer to a function may be converted to a pointer to another function 
type. Calling the function specified by the converted pointer is implementation-
dependent; however, if the converted pointer is reconverted to its original type, the result 
is identical to the original pointer. 

A6.7 Void 

The !(nonexistent) value of a void object may not be used in any way, and neither 
explicit nor implicit conversion to any non-void type may be applied. Because a void 
expression denotes a nonexistent value, such an expression may be used only where the 
value is not required, for example as an expression statement (§A9.2) or as the left 
operand of a comma operator (§A7.18). 

An expression may be converted to type void by a cast. For example, a void cast 
documents the discarding of the value of a function call used as an expression statement. 

void did not appear in the first edition of this book, but has become common 
since. 

A6.8 Pointers to Void 

Any pointer to an object may be converted to type void * without loss of informa-
tion. If the result is converted back to the original pointer type, the original pointer is 
recovered. Unlike the pointer-to-pointer conversions discussed in §A6.6, which generally 
require an explicit cast, pointers may be assigned to and from pointers of type void *• 
and may be compared with them. 

This interpretation of void * pointers is new; previously, char * pointers 
played the role of generic pointer. The ANSI standard specifically blesses the 
meeting of void * pointers with object pointers in assignments and relationals, 
while requiring explicit casts for other pointer mixtures. 



200 REFERENCE MANUAL APPENDIX A 

A 7. Expressions 

The precedence of expression operators is the same a.s the order of the major subsec-
tions of this section, highest precedence first. Thus, for example, the expressions 
referred to as the operands of + (§A7.7) are those expressions defined in §§A7.1-A7.6. 
Within each subsection, the operators have the same precedence. Left- or right-
associativity is specified in each subsection for the operators discussed therein. The 
grammar in §A13 incorporates the precedence and associativity of the operators. 

The precedence and associativity of operators is fully specified, but the order of 
evaluation of expressions is, with certain exceptions, undefined, even if the subexpressions 
involve side effects. That is, unless the definition of an operator guarantees that its 
operands are evaluated in a particular order, the implementation is free to evaluate 
operands in any order, or even to interleave their evaluation. However, each operator 
combines the values produced by its operands in a way compatible with the parsing of 
the expression in which it appears. 

This rule revokes the previous freedom to reorder expressions with operators 
that are mathematically commutative and associative, but can fail to be compu-
tationally associative. The change affects only floating-point computations near 
the limits of their accuracy, and situations where overflow is possible. 

The handling of overflow, divide check, and other exceptions in expression evaluation 
is not defined by the language. Most existing implementations of C ignore overflow in 
evaluation of signed integral expressions and assignments, but this behavior is not 
guaranteed. Treatment of division by 0, and all floating-point exceptions, varies among 
implementations; sometimes it is adjustable by a non-standard library function. 

A7. 1 Pointer Generation 

If the type of an expression or subexpression is "array of T," for some type T, then 
the value of the expression is a pointer to the first object in the array, and the type of 
the expression is altered to ''pointer to T." This conversion does not take place if the 
expression is the operand of the unary & operator, or of ++, --, sizeof, or as the left 
operand of an assignment operator or the . operator. Similarly, an expression of type 
"function returning T," except when used as the operand of the & operator, is converted 
to "pointer to function returning T." 

A7 .2 Primary Expressions 

Primary expressions are identifiers, constants, strings, or expressions in parentheses. 
primary-expression: 

identifier 
constant 
string 
( expression 

An identifier is a primary expression, provided it has been suitably declared as dis-
cussed below. Its type is specified by its declaration. An identifier is an lvalue if it 
refers to an object (§AS) and if its type is arithmetic, structure, union, or pointer. 

A constant is a primary expression. Its type depends on its form as discussed in 
§A2.5. 

A string literal is a primary expression. Its type is originally "array of char" (for 
wide-character strings, "array of wchar _ t"), but following the rule given in §A 7 .1, this 



SECTION A7 EXPRESSIONS 201 

is usually modified to "pointer to char" ( wchar _ t) and the result is a pointer to the 
first character in the string. The conversion also does not occur in certain initializers; 
see §A8.7. 

A parenthesized expression is a primary expression whose type and value are identi-
cal to those of the unadorned expression. The presence of parentheses does not affect 
whether the expression is an lvalue. 

A7.3 Postfix Expressions 

The operators in postfix expressions group left to right. 
postfix -expression: 

primary-expression 
postfix-expression [ expression ] 
postfix-expression ( argument-expression-listopt 
postfix-expression . identifier 
postfix-expression -> identifier 
postfix-expression ++ 
postfix-expression --

argument-expression-list: 
assignment -expression 
argument-expression-list , assignment-expression 

A7.3.1 Array References 

A postfix expression followed by an expression in square brackets is a postfix expres-
sion denoting a subscripted array reference. One of the two expressions must have type 
"pointer to T', where T is some type, and the other must have integral type; the type of 
the subscript expression is T. The expression E 1 [ E2] is identical (by definition) to 
* ( ( E 1 ) + ( E2) ) . See §A8.6.2 for further discussion. 

A7.3.2 Function Calls 

A function call is a postfix expression, called the function designator, followed by 
parentheses containing a possibly empty, comma-separated list of assignment expressions 
(§A7.17), which constitute the arguments to the function. If the postfix expression con-
sists of an identifier for which no declaration exists in the current scope, the identifier is 
implicitly declared as if the declaration 

extern int identifier ( ) ; 
had been given in the innermost block containing the function call. The postfix expres-
sion (after possible implicit declaration and pointer generation, §A 7.1) must be of type 
"pointer to function returning T," for some type T, and the value of the function call 
has type T. 

In the first edition, the type was restricted to "function," and an explicit * 
operator was required to call through pointers to functions. The ANSI standard 
blesses the practice of some existing compilers by permitting the same syntax 
for calls to functions and to functions specified by pointers. The older syntax is 
still usable. 

The term argument is used for an expression passed by a function call; the term 
parameter is used for an input object (or its identifier) received by a function definition, 



202 REFERENCE MANUAL APPENDIX A 

or described in a function declaration. The terms "actual argument (parameter)" and 
"formal argument (parameter)" respectively are sometimes used for the same distinc-
tion. 

In preparing for the call to a function, a copy is made of each argument; all 
argument-passing is strictly by value. A function may change the values of its parame-
ter objects, which are copies of the argument expressions, but these changes cannot 
affect the values of the arguments. However, it is possible to pass a pointer on the 
understanding that the function may change the value of the object to which the pointer 
points. 

There are two styles in which functions may be declared. In the new style, the types 
of parameters are explicit and are part of the type of the function; such a declaration is 
also called a function prototype. In the old style, parameter types are not specified. 
Function declaration is discussed in §§A8.6.3 and AlO.l. 

If the function declaration in scope for a call is old-style, then default argument pro-
motion is applied to each argument as follows: integral promotion (§A6.1) is performed 
on each argument of integral type, and each float argument is converted to double. 
The effect of the call is undefined if the number of arguments disagrees with the 
number of parameters in the definition of the function, or if the type of an argument 
after promotion disagrees with that of the corresponding parameter. Type agreement 
depends on whether the function's definition is new-style or old-style. If it is old-style, 
then the comparison is between the promoted type of the argument of the call, and the 
promoted type of the parameter; if the definition is new-style, the promoted type of the 
argument must be that of the parameter itself, without promotion. 

If the function declaration in scope for a call is new-style, then the arguments are 
converted, as if by assignment, to the types of the corresponding parameters of the 
function's prototype. The number of arguments must be the same as the number of 
explicitly described parameters, unless the declaration's parameter list ends with the 
ellipsis notation (, ••• ) . In that case, the number of arguments must equal or exceed 
the number of parameters; trailing arguments beyond the explicitly typed parameters 
suffer default argument promotion as described in the preceding paragraph. If the 
definition of the function is old-style, then the type of each parameter in the prototype 
visible at the call must agree with the corresponding parameter in the definition, after 
the definition parameter's type has undergone argument promotion. 

These rules are especially complicated because they must cater to a mixture of 
old- and new-style functions. Mixtures are to be avoided if possible. 

The order of evaluation of arguments is unspecified; take note that various compilers 
differ. However, the arguments and the function designator are completely evaluated, 
including all side effects, before the function is entered. Recursive calls to any function 
are permitted. 

A7.3.3 Structure References 

A postfix expression followed by a dot followed by an identifier is a postfix expres-
sion. The first operand expression must be a structure or a union, and the identifier 
must name a member of the structure or union. The value is the named member of the 
structure or union, and its type is the type of the member. The expression is an lvalue if 
the first expression is an lvalue, and if the type of the second expression is not an array 
type. 



SECTION A7 EXPRESSIONS 103 

A postfix expression followed by an arrow (built from - and >) followed by an iden-
tifier is a postfix expression. The first operand expression must be a pointer to a struc-
ture or a union, and the identifier must name a member of the structure or union. The 
result refers to the named member of the structure or union to which the pointer expres-
sion points, and the type is the type of the member; the result is an lvalue if the type is 
not an array type. 

Thus the expression E 1-> MOS is the same as ( * E 1 ) • MOS. Structures and unions 
are discussed in §A8.3. 

In the first edition of this book, it was already the rule that a member name in 
such an expression had to belong to the structure or union mentioned irt the 
postfix expression; however, a note admitted that this rule was not firmly 
enforced. Recent compilers, and ANSI, do enforce it. 

A7.3.4 Postfix lncrementation 

A postfix expression followed by a ++ or -- operator is a postfix expression. The 
value of the expression is the value of the operand. After the value is noted, the operand 
is incremented ( ++) or decremented (--) by I. The operand must be an lvalue; see the 
discussion of additive operators (§A7.7) and assignment (§A7.17) for further constraints 
on the operand and details of the operation. The result is not an lvalue. 

A 7.4 Unary Operators 

Expressions with unary operators group right-to-left. 
unary-expression: 

postfix -expression 
++ unary-expression 
-- unary-expression 
unary-operator cast -expression 
sizeof unary-expression 
sizeof ( type-name ) 

unary-operator: one of 
&. * + 

A7.4.1 Prefix lncrementation Operators 

A unary expression preceded by a ++ or -- operator is a unary expression. The 
operand is incremented (++) or decremented (--) by I. The value of the expression is 
the value after the incrementation (decrementation). The operand must be an I value; 
see the discussion of additive operators (§A7.7) and assignment (§A7.17) for further 
constraints on the operand and details of the operation. The result is not an lvalue. 

A7.4.2 Address Operator 

The unary &. operator takes the address of its operand. The operand must be an 
lvalue referring neither to a bit-field nor to an object declared as register, or must be 
of function type. The result is a pointer to the object or function referred to by the 
lvalue. If the type of the operand is T, the type of the result is "pointer to T." 



104 REFERENCE MANUAL APPENDIX A 

A7.4.3 Indirection Operator 

The unary *operator denotes indirection, and returns the object or function to which 
its operand points. It is an lvalue if the operand is a pointer to an object of arithmetic, 
structure, union, or pointer type. If the type of the expression is "pointer to T," the type 
of the result is T. 

A7.4.4 Unary Plus Operator 

The operand of the unary + operator must have arithmetic type, and the result is the 
value of the operand. An integral operand undergoes integral promotion. The type of 
the result is the type of the promoted operand. 

The unary + is new with the ANSI standard. It was added for symmetry with 
unary-. 

A7 .4.5 Unary Minus Operator 

The operand of the unary - operator must have arithmetic type, and the result is the 
negative of its operand. An integral operand undergoes integral promotion. The nega-
tive of an unsigned quantity is computed by subtracting the promoted value from the 
largest value of the promoted type and adding one; but negative zero is zero. The type 
of the result is the type of the promoted operand. 

A7 .4.6 One's Complement Operator 

The operand of the - operator must have integral type, and the result is the one's 
complement of its operand. The integral promotions are performed. If the operand is 
unsigned, the result is computed by subtracting the value from the largest value of the 
promoted type. If the operand is signed, the result is computed by converting the pro-
moted operand to the corresponding unsigned type, applying -, and converting back to 
the signed type. The type of the result is the type of the promoted operand. 

A7.4.7 Logical Negation Operator 

The operand of the I operator must have arithmetic type or be a pointer, and the 
result is 1 if the value of its operand compares equal to 0, and 0 otherwise. The type of 
the result is int. 

A7.4.8 Sizeof Operator 

The sizeof operator yields the number of bytes required to store an object of the 
type of its operand. The operand is either an expression, which is not evaluated, or a 
parenthesized type name. When sizeof is applied to a char, the result is 1; when 
applied to an array, the result is the total number of bytes in the array. When applied 
to a structure or union, the result is the number of bytes in the object, including any 
padding required to make the object tile an array: the size of an array of n elements is n 
times the size of one element. The operator may not be applied to an operand of func-
tion type, or of incomplete type, or to a bit-field. The result is an unsigned integral con-
stant; the particular type is implementation-defined. The standard header < stddef • h> 
(see Appendix B) defines this type as size_ t. 



SECTION A7 EXPRESSIONS 105 

A7.5 Casts 

A unary expression preceded by the parenthesized name of a type causes conversion 
of the value of the expression to the named type. 

cast -expression: 
unary-expression 
( type-name ) cast-expression 

This construction is called a cast. Type names are described in §A8.8. The effects of 
conversions are described in §A6. An expression with a cast is not an )value. 

A7 .6 Multiplicative Operators 

The multiplicative operators *• I, and % group left-to-right. 
multiplicative-expression: 

cast -expression 
multiplicative-expression * cast-expression 
multiplicative-expression I cast-expression 
multiplicative-expression %cast-expression 

The operands of * and I must have arithmetic type; the operands of % must have 
integral type. The usual arithmetic conversions are performed on the operands, and 
predict the type of the result. 

The binary * operator denotes multiplication. 
The binary I operator yields the quotient, and the % operator the remainder, of the 

division of the first operand by the second; if the second operand is 0, the result is unde-
fined. Otherwise, it is always true that (alb) *b + a%b is equal to a. If both 
operands are non-negative, then the remainder is non-negative and smaller than the divi-
sor; if not, it is guaranteed only that the absolute value of the remainder is smaller than 
the absolute value of the divisor. 

A7. 7 Additive Operators 

The additive operators + and - group left-to-right. If the operands have arithmetic 
type, the usual arithmetic conversions are performed. There are some additional type 
possibilities for each operator. 

additive-expression: 
multiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

The result of the + operator is the sum of the operands. A pointer to an object in an 
array and a value of any integral type may be added. The latter is converted to an 
address offset by multiplying it by the size of the object to which the pointer points. 
The sum is a pointer of the same type as the original pointer, and points to another 
object in the same array, appropriately offset from the original object. Thus if P is a 
pointer to an object in an array, the expression P+ 1 is a pointer to the next object in the 
array. If the sum pointer points outside the bounds of the array, except at the first loca-
tion beyond the high end, the result is undefined. 

The provision for pointers just beyond the end of an array is new. It legitimizes 
a common idiom for looping over the elements of an array. 

The result of the - operator is the difference of the operands. A value of any 



206 REFERENCE MANUAL APPENDIX A 

integral type may be subtracted from a pointer, and then the same conversions and con-
ditions as for addition apply. 

If two pointers to objects of the same type are subtracted, the result is a signed 
integral value representing the displacement between the pointed-to objects; pointers to 
successive objects differ by 1. The type of the result depends on the implementation, but 
is defined as ptrdiff_ tin the standard header <stddef. h>. The value is undefined 
unless the pointers point to objects within the same array; however if P points to the last 
member of an array, then ( P+ 1) -P has value 1. 

A7.8 Shift Operators 

The shift operators « and » group left-to-right. For both operators, each operand 
must be integral, and is subject to the integral promotions. The type of the result is that 
of the promoted left operand. The result is undefined if 'the right operand is negative, or 
greater than or equal to the number of bits in the left expression's type. 

shift-expression: 
additive-expression 
shift-expression < < additive-expression 
shift-expression >> additive-expression 

The value of E 1 «E2 is E 1 (interpreted as a bit pattern) left-shifted E2 bits; in the 
absence of overflow, this is eqqivalent to multiplication by 2E2 • The value of E 1 » E2 is 
E 1 right-shifted E2 bit positions. The right shift is to division by 2E2 if E 1 is 
unsigned or if it has a non-negative value; otherwise the result is implementation-<lefined. 

A7.9 Relational Operators 

The relational operators group left-to-right, but this fact is not useful; a<b<c is 
parsed as ( a<b) <c, and a<b evaluates to either 0 or 1. 

relational-expression: 
shift -expression 
relational-expression < shift -expression 
relational-expression > shift-expression 
relational-expression < = shift -expression 
relational-expression > = shift -exprfssion 

The operators < (less), > (greater), <= Oess or equal) and >= (greater or equal) all 
yield 0 if the specified relation is false and 1 if it is true. The type of the result is int. 
The usual arithmetic coqversions are performed on arithmetic operands .. Pointers to 
objects of the same type (igrioring any qualifiers) may be compared; the result depends 
on the relative locations in the address space of the pointed-to objects. Pointer com-
parison is defined only for parts of the same object: if two pointers point to the same 
simple object, they compare equal; if the pointers are to members of the same structure, 
pointers to objects declared later in the structure compare higher; if the pointers are to 
members of the same union, they compare equal; if the pointers refer to members of an 
array, the comparison is equivalent to comparison of the corresponding subscripts. If P 
points to the last member of an array, then .P+ 1 compares higher than P, even though 
P+ 1 points outside the array. Otherwise, pointer comparison is undefined. 

These rules slightly liberalize the restrictions stated in the first edition, by per-
mitting comparison of pointers to different members of a structure or union. 
They also legalize comparison with a pointer just off the end of an array. 



SECTION A7 

A 7. 10 Equality Operators 

equality-expression: 
relational-expression 
equality-expression == relational-expression 
equality-expression I= relational-expression 

EXPRESSIONS 207 

The == (equal to) and the I= (not equal to) operators are analogous to the relational 
operators except for their lower precedence. (Thus a<b == c<d is I whenever a<b 
and c<d have the same truth-value.) 

The equality operators follow the same rules as the relational operators, but permit 
additional possibilities: a pointer may be compared to a constant integral expression with 
value 0, or to a pointer to void. See §A6.6. 

A7.11 Bitwise AND Operator 

AND-expression: 
equality-expression 
AND-expression & equality-expression 

The usual arithmetic conversions are performed; the result is the bitwise AND function 
of the operands. The operator applies only to integral operands. 

A7.12 Bitwise Exclusive OR Operator 

exclusive-OR -expression: 
AND-expression 
exclusive-OR-expression " AND-expression 

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR 
function of the operands. The operator applies only to integral operands. 

A7.13 Bitwise Inclusive OR Operator 

inclusive-OR -expression: 
exclusive-OR -expression 
inclusive-OR-expression : exclusive-OR-expression 

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR 
function of its operands. The operator applies only to integral operands. 

A7.14 Logical AND Operator 

logical-AND-expression: 
inclusive-OR -expression 
logical-AND-expression && inclusive-OR-expression 

The && operator groups left-to-right. It returns 1 if both its operands compare unequal 
to zero, 0 otherwise. Unlike &, && guarantees left-to-right evaluation: the first operand 
is evaluated, including all side effects; if it is equal to 0, the value of the expression is 0. 
Otherwise, the right operand is evaluated, and if it is equal to 0, the expression's value is 
0, otherwise 1. 

The operands need not have the same type, but each must have arithmetic type or be 
a pointer. The result is int. 



208 REFERENCE MANUAL 

A7.15 Logical OR Operator 

logical- OR- expression: 
logical-AND- expression 
logical-OR-expression I I logical-AND-expression 

APPENDIX A 

The : : operator groups left-to-right. It returns l if either of its operands compares 
unequal to zero, and 0 otherwise. Unlike I, I I guarantees left-to-right evaluation: the 
first operand is evaluated, including all side effects; if it is unequal to 0, the value of the 
expression is I. Otherwise, the right operand is evaluated, and if it is unequal to 0, the 
expression's value is l, otherwise 0. 

The operands need not have the same type, but each must have arithmetic type or be 
a pointer. The result is int. 

A7.16 Qntitional Operator 

conditional-expression: 
logical- OR- expression 
logical-OR-expression? expression : conditional-expression 

The first expression is evaluated, including all side effects; if it compares unequal to 0, 
the result is the value of the second expression, otherwise that of third expression. Only 
one of the second and third operands is evaluated. If the second and third operands are 
arithmetic, the usual arithmetic conversions are performed to bring them to a common 
type, and that is the type of the result. If both are void, or structures or unions of the 
same type, or pointers to objects of the same type, the result has the common type. If 
one is a pointer and the other the constant 0, the 0 is converted to the pointer type, and 
the result has that type. If one is a pointer to void and the other is another pointer, the 
other pointer is converted to a pointer to void, and that is the type of the result. 

In the type comparison for pointers, any type qualifiers ( §A8.2) in the type to which 
the pointer points are insignificant, but the result type inherits qualifiers from both arms 
of the conditional. 

A7.17 Assigrmert Expressions 
There are several assignment operators; all group right-to-left. 

assignment-expression: 
conditional- ex pression 
unary- ex pression assignment- operator assignment- ex pression 

assignment-operator: one of 
= *= I= %= -= <<= >>= &= = : = 

All require an lvalue as left operand, and the lvalue must be modifiable: it must not be 
an array, and must not have an incomplete type, or be a function. Also, its type must 
not be qualified with const; if it is a structure or union, it must not have any member 
or, recursively, submember qualified with const. The type of an assignment expression 
is that of its left operand, and the value is the value stored in the left operand after the 
assignment has taken place. 

In the simple assignment with =, the value of the expression replaces that of the 
object referred to by the lvalue. One of the following must be true: both operands have 
arithmetic type, in which case the right operand is converted to the type of the left by 
the assignment; or both operands are structures or unions of the same type; or one 



SECTION A7 EXPRESSIONS 209 

operand is a pointer and the other is a pointer to void; or the left operand is a pointer 
and the right operand is a constant expression with value 0; or both operands are 
pointers to functions or objects whose types are the same except for the possible absence 
of const or volatile in the right operand. 

An expression of the form E 1 op = E2 is equivalent to E 1 = E 1 op ( E2 ) except 
that E1 is evaluated only once. 

A7.18 Corrma Operator 

expression: 
assignment-expression 
expression , assignment- expression 

A pair of expressions separated by a comma is evaluated left-to-right, and the value of 
the left expression is discarded. The type and value of the result are the type and value 
of the right operand. All side effects from the evaluation of the left operand are com-
pleted before beginning evaluation of the right operand. In contexts where comma is 
given a special meaning, for example in lists of function arguments (§A 7.3 .2) and lists of 
initializers ( §A8.7), the required syntactic unit is an assignment expression, so the 
comma operator appears only in a parenthetical grouping; for example, 

f(a, (t=3, t+2), c) 

has three arguments, the second of which has the value 5. 

A7 .19 Qxlstant Expressions 
Syntactically, a constant expression is an expression restricted to a subset of opera-

tors: 
constant- expression: 

conditional- ex pression 
Expressions that evaluate to a constant are required in several contexts: after case, as 
array bounds and bit-field lengths, as the value of an enumeration constant, in initializ-
ers, and in certain preprocessor expressions. 

Constant expressions may not contain assignments, increment or decrement opera-
tors, function calls, or comma operators, except in an operand of sizeof. If the con-
stant expression is required to be integral, its operands must consist of integer, enumera-
tion, character, and floating constants; casts must specify an integral type, and any float-
ing constants must be cast to an integer. This necessarily rules out arrays, indirection, 
address-of, and structure member operations. (However, any operand is permitted for 
sizeof.) 

More latitude is permitted for the constant expressions of initializers; the operands 
may be any type of constant, and the unary &. operator may be applied to external or 
static objects, and to external or static arrays subscripted with a constant expression. 
The unary & operator can also be applied implicitly by appearance of unsubscripted 
arrays and functions. Initializers must evaluate either to a constant or to the address of 
a previously declared external or static object plus or minus a constant. 

Less latitude is allowed for the integral constant expressions after #if; sizeof 
expressions, enumeration constants, and casts are not permitted. See §A 12.5. 



210 REFERENCE MANUAL APPENDIX A 

AS. Declarations 
Declarations specify the interpretation given to each identifier; they do not neces· 

sarily reserve storage associated with the identifier. Declarations that reserve storage are 
called definitions. Declarations have the form 

declaration: 
declaration-specifiers init -declarator-list0 pr 

The declarators in the init-declarator-list contain the identifiers being declared; the 
declaration-specifiers consist of a sequence of type and storage class specifiers. 

declaration-specifiers: 
storage-class-specifier dec/aration-specifiersopr 
type-specifier declaration-specifiersopt 
type-qualifier declaration-specifiersopt 

init -declarator-list: 
init -declarator 
init-declarator-list , init-declarator 

init-declarator: 
declarator 
declarator = initializer 

Declarators will be discussed later (§A8.5); they contain the names being declared. A 
declaration must have at least one declarator, or its type specifier must declare a struc-
ture tag, a union tag, or the members of an enumeration; empty declarations are not per-
mitted. 

AS. 1 Storage Class Specifiers 

The storage class specifiers are: 
storage-class-specifier: 

auto 
register 
static 
extern 
typedef 

The meanings of the storage classes were discussed in §A4. 
The auto and register specifiers give the declared objects automatic storage 

class, and may be used only within functions. Such declarations also serve as definitions 
and cause storage to be reserved. A register declaration is equivalent to an auto 
declaration, but hints that the declared objects will be accessed frequently. Only a few 
objects are actually placed into registers, and only certain types are eligible; the restric-
tions· are implementation-dependent. However, if an object is declared register, the 
unary &. operator may not be applied to it, explicitly or implicitly. 

The rule that it is illegal to calculate the address of an object declared 
register, but actually taken to be auto, is new. 

The static specifier gives· the declared objects static storage class, and may be 
used either inside or outside functions. Inside a function, this specifier causes storage to 
be allocated, and serves as a definition; for its effect outside a function, see §All.2. 

A declarationwith extern, used inside a function, specifies that the storage for the 
declared objects is defined elsewhere; for its effects outside a function, see §All.2. 



SECTION A8 DECLARATIONS 111 

The typedef specifier does not reserve storage and is called a storage class specifier 
only for syntactic convenience; it is discussed in §A8.9. 

At most one storage class specifier may be given in a declaration. If none is given, 
these rules are used: objects declared inside a function are taken to be auto; functions 
declared within a function are taken to be extern; objects and functions declared out-
side a function are taken to be static, with external linkage. See §§AlO-All. 

A8.2 Type Specifiers 

The type-specifiers are 
type-specifier: 

void 
char 
short 
int 
long 
float 
double 
signed 
unsigned 
struct -or-union-specifier 
enum -specifier 
typedef-name 

At most one of the words long or short may be specified together with int; the 
meaning is the same if int is not mentioned. The word long may be specified together 
with double. At most one of signed or unsigned may be specified together with 
int or any of its short or long varieties, or with char. Either may appear alone, in 
which case int is understood. The signed specifier is useful for forcing char objects 
to carry a sign; it is permissible but redundant with other integral types. 

Otherwise, at most one type-specifier may be given in a declaration. If the type-
specifier is missing from a declaration, it is taken to be int. 

Types may also be qualified, to indicate special properties of the objects being 
declared. 

type-qualifier: 
const 
volatile 

Type qualifiers may appear with any type specifier. A const object may be initialized, 
but not thereafter assigned to. There are no implementation-independent semantics for 
volatile objects. 

The const and volatile properties are new with the ANSI standard. The 
purpose of const is to announce objects that may be placed in read-only 
memory, and perhaps to increase opportunities for optimization. The purpose 
of volatile is to force an implementation to suppress optimization that could 
otherwise occur. For example, for a machine with memory-mapped 
input/output, a pointer to a device register might be declared as a pointer to 
volatile, in order to prevent the compiler from removing apparently redun-
dant references through the pointer. Except that it should diagnose explicit 
attempts to change canst objects, a compiler may ignore these qualifiers. 



212 REFERENCE MANUAL APPENDIX A 

A8.3 Structure and Union Declarations 

A structure is an object consisting of a sequence of named members of various types. 
A union is an object that contains, at different times, any one of several members of 
various types. Structure and union specifiers have the same form. 

struct -or-union-specifier: 
struct-or-union identifieropr { struct-declaration-list } 
struct-or-union identifier 

struct -or-union: 
struct 
union 

A struct-declaration-list is a sequence of declarations for the members of the structure or 
union: 

struct -declaration-list: 
struct -declaration 
struct -declaration-list struct -declaration 

struct -declaration: 
specifier-qualifier-list struct -declarator-list 

specifier-qualifier-list: 
type-specifier specifier-qualifier-/istopt 
type-qualifier specifier-qualifier-listopt 

struct-declarator-list: 
struct-declarator 
struct-declarator-list , struct-declarator 

Usually, a struct-declarator is just a declarator for a member of a structure or union. A 
structure member may also consist of a specified number of bits. Such a member is also 
called a bit-field, or merely field; its length is set off from the declarator for the field 
name by a colon. 

struct -declarator: 
declarator 
declaratoropt : constant-expression 

A type specifier of the form 
struct-or-union identifier { struct-declaration-list } 

declares the identifier to be the tag of the structure or union specified by the list. A 
subsequent declaration in the same or an inner scope may refer to the same type by 
using the tag in a specifier without the list: 

struct -or-union identifier 
If a specifier with a tag but without a list appears when the tag is not declared, an 
incomplete type is specified. Objects with an incomplete structure or union type may be 
mentioned in contexts where their size is not needed, for example in declarations (not 
definitions), for specifying a pointer, or for creating a typedef, but not otherwise. The 
type becomes complete on occurrence of a subsequent specifier with that tag, and con-
taining a declaration list. Even in specifiers with a list, the structure or union type being 
declared is incomplete within the list, and becomes complete only at the } terminating 
the specifier. 

A structure may not contain a member of incomplete .type. Therefore, it is impossi-
ble to declare a structure or union containing an instance of itself. However, besides 



SECTION AB DECLARATIONS 213 

giving a name to the structure or union type, tags allow definition of self-referential 
structures; a structure or union may contain a pointer to an instance of itself, because 
pointers to incomplete types may be declared. 

A very special rule applies to declarations of the form 

struct-or-union identifier ; 

that declare a structure or union, but have no declaration list and no declarators. Even 
if the identifier is a structure or union tag already declared in an outer scope (§All.l), 
this declaration makes the identifier the tag of a new, incompletely-typed structure or 
union in the current scope. 

This recondite rule is new with ANSI. It is intended to deal with mutually-
recursive structures declared in an inner scope, but whose tags might already be 
declared in the outer scope. 

A structure or union specifier with a list but no tag creates a unique type; it can be 
referred to directly only in the declaration of which it is a part. 

The names of members and tags do not conflict with each other or with ordinary 
variables. A member name may not appear twice in the same structure or union, but 
the same member name may be used in different structures or unions. 

In the first edition of this book, the names of structure and union members were 
not associated with their parent. However, this association became common in 
compilers well before the ANSI standard. 

A non-field member of a structure or union may have any object type. A field 
member (which need not have a declarator and thus may be unnamed) has type int, 
unsigned int, or signed int, and is interpreted as an object of integral type of the 
specified length in bits; whether an int field is treated as signed is implementation-
dependent. Adjacent field members of structures are packed into implementation-
dependent storage units in an implementation-dependent direction. When a field follow-
ing another field will not fit into a partially-filled storage unit, it may be split between 
units, or the unit may be padded. An unnamed field with width 0 forces this padding, so 
that the next field will begin at the edge of the next allocation unit. 

The ANSt standard makes fields even more implementation-dependent than did 
the first It is advisable to read the language rules for storing bit-fields 
as "implementlltion-dependent" without qqalification. Structures with bit-fields 
may bC used as a portable way of attempting to reduce the storage required for 
a structure (with the probable cost of increasing the instruction space, and time, 
needed to access the fields), or as a non-portable way to describe a storage lay-
out known at the bit level. In the second case, it is necessary to understand the 
rules of the local implementation. 

The members of a structure have addresses increasing in the order of their declara-
tions. A non-field member of a structure is aligned at an addressing boundary depend-
ing on its type; therefore, th(;re may be unnamed holes in a structure. If a pointer to a 
structure is cast to the type of a pointer to its first member, the result refers to the first 
member. 

A union may be thought of as a structure all of whose members begin at offset 0 and 
whose size is sufficient to contain any of its members. At most one of the members can 
be stored in a union at any time. If a pointer to a union is cast to the type of a pointer 
to a member, the result refers to that member. 

A simple example of a structure declaration is 



114 REFERENCE MANUAL 

struct tnode { 

} ; 

cha:r tword[20]; 
int count; 
struct tnode *left; 
struct tnode *right; 

APPENDIX A 

which contains an array of 20 characters, an integer, and two pointers to similar struc-
tures. this declaration has been the declaration 

struct tnode s, *SP; 
declares s to be a structure of the given sort and sp to be a pointer to a structure of the 
given sort. With these declarations, the expression 

sp->count 
refers to the count field of the structure to which sp points; 

s.left 
refers to the left subtree pointer of the structure s; and 

s.right->tword[O) 
refers to the first character of the. tword member of the right subtree of s. 

In general, a member of a union may not be inspected unless the value of the union 
has been assigned using that same member. However, one special guarantee simplifies 
the use of unions: if a union contains several structures that share a common initial 
s<:quence, and if the union currently contains one of these structures, it is permitted to 
refer to the common initial part of any of the contained structures. For example, the 
following is a legal fragment: 

union { 
struct { 

} u; 

int type; 
} n; 
struct { 

int type; 
int intnode; 

} ni; 
struct { 

int type; 
float floatnode; 

} nf; 

u.nf.type = FLOAT; 
u.nf.floatnode = 3.14; 

if (u.n.type == FLOAT) 
... sin(u.nf .floatnode) 

A8.4 l:numerationa 
Enumerations are unique types with values ranging over a set of named constants 

called enumerators. The form of an enumeration specifier borrows from that of struc-
tures and unions. 



SECTION AS 

enum-specifier: 
enum identifieropt { enumerator-list } 
enum identifier 

enumerator-list: 
enumerator 
enumerator-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

DECLARATIONS 115 

The identifiers in an enumerator list are declared as constants of type int, and may 
appear wherever constants are required. If no enumerators with = appear, then the 
values of the corresponding constants begin at 0 and increase by 1 as the declaration is 
read from left to right. An enumerator with = gives the associated identifier the value 
specified; subsequent identifiers continue the progression from the assigned value. 

Enumerator names in the same scope must all be distinct from each other and from 
ordinary variable names, but the values need not be distinct. 

The role of the identifier in the enum-specifier is analogous to that of the structure 
tag in a struct-specifier; it names a particular enumeration. The rules for enum-
specifiers with and without tags and lists are the same as those for structure or union 
specifiers, except that incomplete enumeration types do not exist; the tag of an enum-
specifier without an enumerator list must refer to an in-scope specifier with a list. 

A8.5 Declarator& 

Enumerations are new since the first edition of this book, but have been part of 
the language for some years. 

Declarators have the syntax: 
declarator: 

pointer opt direct -declarator 

direct -declarator: 
identifier 
( declarator ) 
direct-declarator [ constant-expressionopt ] 
direct-declarator ( parameter-type-list ) 
direct-declarator ( identifier-listopt ) 

pointer: 
* type-qualifier-listopt 
* type-qualifier-listopt pointer 

type-qualifier-list: 
type-qualifier 
type-qualifier-list type-qualifier 

The structure of declarators resembles that of indirection, function, and array expres-
sions; the grouping is the same. 



216 REFERENCE MANUAL APPENDIX A 

A8.6 Meaning of Oeclaratora 

A list of declarators appears after a sequence of type and storage class specifiers. 
Each declarator declares a unique main identifier, the one that appears as the first alter-
native of the production for direct-declarator. The storage class specifiers apply directly 
to this identifier, but its type depends on the form of its declarator. A declarator is read 
as an assertion that when its identifier appears in an expression of the same form as the 
declarator, it yields an object of the specified type. 

Considering only the type parts of the declaration specifiers (§A8.2) and a particular 
declarator, a declaration has the form "T D," where T is a type and D is a declarator. 
The type attributed to the identifier in the various forms of declarator is described 
inductively using this notation. 

T. 
In a declaration T D where D is an unadorned identifier, the type of the identifier is 

In a declaration T D where D has the form 
( D1 ) 

then the type of the identifier in D 1 is the same as that of D. The parentheses do not 
alter the type, but may change the binding of complex declarators. 

A8.6. 1 Pointer Oeclaratora 

In a declaration T D where D has the form 
* type-qualifier-listopt D 1 

and the type of the identifier in the declaration T D1 is "type-modifier T," the type of 
the identifier of Dis "type-modifier type-qualifier-list pointer to T." Qualifiers follow-
ing * apply to pointer itself, rather than to the object to which the pointer points. 

For example, consider the declaration 
int *ap[]; 

Here ap[] plays the role of D1; a declaration "int ap[ ]" (below) would give ap the 
type "array of int," the type-qualifier list is empty, and the type-modifier is "array of." 
Hence the actual declaration gives ap the type "array of pointers to int." 

As other examples, the declarations 
int i, *Pi, *COnst cpi = &i; 
const int ci = 3, *Pci; 

declare an integer i and a pointer to an integer pi. The value of the constant pointer 
cpi may not be changed; it will always point to the same location, although the value to 
which it refers may be altered. The integer ci is constant, and may not be changed 
(though it may be initialized, as here.) The type of pci is "pointer to const int," 
and pci itself may be changed to point to another place, but the value to which it points 
may not be altered by assigning through pci. 

A8.6.2 Array Oeclaratora 

In a declaration T D where D has the form 
D1 [constant-expressionopt] 

and the type of the identifier in the declaration T D1 is "type-modifier T," the type of 
the identifier of Dis "type-modifier array ofT." If the constant-expression is present, it 
must have integral type, and value greater than 0. If the constant expression specifying 



SECTION A8 DECLARATIONS 217 

the bound is missing, the array has an incomplete type. 
An array may be constructed from an arithmetic type, from a pointer, from a struc-

ture or union, or from another array (to generate a multi-dimensional array). Any type 
from which an array is constructed must be complete; it must not be an array or struc-
ture of incomplete type. This implies that for a multi-dimensional array, only the first 
dimension may be missing. The type of an object of incomplete array type is completed 
by another, complete, declaration for the object (§Al0.2), or by initializing it (§A8.7). 
For example, 

float fa[17], *afp[17]; 
declares an array of float numbers and an array of pointers to float numbers. Also, 

static int x3d[3][5][7]; 
declares a static three-dimensional array of integers, with rank 3X5x7. In complete 
detail, x3d is an array of three items; each item is an array of five arrays; each of the 
latter arrays is an array of seven integers. Any of the expressions x3d, x3d [ i ], 
x3d [ i] [ j], x3d [ i] [ j ] [ k] may reasonably appear in an expression. The first three 
have type "array," the last has type int. More specifically, x3d [ i ] [ j ] is an array of 
7 integers, and x3d [ i] is an array of 5 arrays of 7 integers. 

The array subscripting operation is defined so that E 1 [ E2] is identical to 
* ( E 1 +E2). Therefore, despite its asymmetric appearance, subscripting is a commuta-
tive operation. Because of the conversion rules that apply to + and to arrays (§§A6.6, 
A7.1, A7.7), if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th 
member of E 1. 

In the example, x3d[ i] [ j] [k] is equivalent to * ( x3d[ i] [ j] + k ). The first 
subexpression x3d [ i] [ j ] is converted by §A 7 .I to type "pointer to array of integers;" 
by §A7.7, the addition involves multiplication by the size of an integer. It follows from 
the rules that arrays are stored by rows Oast subscript varies fastest) and that the first 
subscript in the declaration helps determine the amount of storage consumed by an 
array, but plays no other part in subscript calculations. 

A8.6.3 Function Declarators 

In a new-style function declaration T D where D has the form 
D 1 (parameter-type-list) 

and the type of the identifier in the declaration T D1 is "type-modifier T," the type of 
the identifier of D is "type-modifier function with arguments parameter-type-list 
returning T." 

The syntax of the parameters is 
parameter-type-list: 

parameter-list 
para111eter-list , 

parameter-list: 
parameter-declaration 
parameter-list , parameter-declaration 

parameter-declaration: 
declaration-specifiers declarator 
declaration-specifiers abstract-declaratoropt 

In the new-style declaration, the parameter list specifies the types of the parameters. As 



118 REFERENCE MANUAL APPENDIX A 

a special case, the declarator for a new-style function with no parameters has a parame-
ter type list consisting solely of the keyword void. If the parameter type list ends with 
an ellipsis ", ••• ", then the function may accept more arguments than the number of 
parameters explicitly described; see §A 7.3 .2. 

The types of parameters that are arrays or functions are altered to pointers, in 
accordance with the rules for parameter conversions; see §AlO.l. The only storage class 
specifier permitted in a parameter's declaration specifier is register, and this specifier 
is ignored unless the function declarator heads a function definition. Similarly, if the 
declarators in the parameter declarations contain identifiers and the function declarator 
does not head a function definition, the identifiers go out of scope immediately. 
Abstract declarators, which do not mention the identifiers, are discussed in §A8.8. 

In an old-style function declaration T D where D has the form 
D 1 (identifier-list opt) 

and the type of the identifier in the declaration T D1 is "type-modifier T," the type of 
the identifier of D is "type-modifier function of unspecified arguments returning T." 
The parameters (if present) have the form 

identifier-list: 
identifier 
identifier-list , identifier 

In the old-style declarator, the identifier list must be absent unless the declarator is used 
in the head of a function definition (§AlO.l). No information about the types of the 
parameters is supplied by the declaration. 

For example, the declaration 
int f(), *fpi(), (*pfi)(); 

declares a function f returning an integer, a function fpi returning a pointer to an 
integer, and a pointer pf i to a function returning an integer. In none of these are the 
parameter types specified; they are old-style. 

In the new-style declaration 
int strcpy(char *dest, const char *Source), rand(void); 

strcpy is a function returning int, with two arguments, the first a character pointer, 
and the second a pointer to constant characters. The parameter names are effectively 
comments. The second function rand takes no arguments and returns int. 

AS. 7 Initialization 

Function declarators with parameter prototypes are, by far, the most important 
language change introduced by the ANSI standard. They offer an advantage 
over the "old-style" declarators of the first edition by providing error-detection 
and coercion of arguments across function calls, but at a cost: turmoil and con-
fusion during their introduction, and the necessity of accommodating both 
forms. Some syntactic ugliness was required for the sake of compatibility, 
namely void as an explicit marker of new-style functions without parameters. 

The ellipsis notation ", •.• " for variadic functions is also new, and, together 
with the macros in the standard header <stdarg. h>, formalizes a mechanism 
that was officially forbidden but unofficially condoned in the first edition. 

These notations were adapted from the C++ language. 

When an object is declared, its init-declarator may specify an initial value for the 
identifier being declared. The initializer is preceded by =, and is either an expression, or 
a list of initializers nested in braces. A list may end with a comma, a nicety for neat 



SECTION AS 

formatting. 
initializer: 

assignment -expression 
{ initia/izer-list } 
{ initializer-list , } 

initializer-list: 
initializer 
initializer-list , initializer 

DECLARATIONS 219 

All the expressions in the initializer for a static object or array must be constant 
expressions as described in §A7.19. The expressions in the initializer for an auto or 
register object or array must likewise be constant expressions if the initializer is a 
brace-enclosed list. However, if the initializer for an automatic object is a single expres-
sion, it need not be a constant expression, but must merely have appropriate type for 
assignment to the object. 

The first edition did not countenance initialization of automatic structures, 
unions, or arrays. The ANSI standard allows it, but only by constant construc-
tions unless the initializer can be expressed by a simple expression. 

A static object not explicitly initialized is initialized as if it (or its members) were 
assigned the constant 0. The initial value of an automatic object not explicitly initialized 
is undefined. 

The initializer for a pointer or an object of arithmetic type is a single expression, 
perhaps in braces. The expression is assigned to the object. 

The initializer for a structure is either an expression of the same type, or a brace-
enclosed list of initializers for its members in order. Unnamed bit-field members are 
ignored, and are not initialized. If there are fewer initializers in the list than members 
of the structure, the trailing members are initialized with 0. There may not be more ini-
tializers than members. 

The initializer for an array is a brace-enclosed list of initializers for its members. If 
the array has unknown size, the number of initializers determines the size of the array, 
and its type becomes complete. If the array has fixed size, the number of initializers 
may not exceed the number of members of the array; if there are fewer, the trailing 
members are initialized with 0. 

As a special case, a character array may be initialized by a string literal; successive 
characters of the string initialize successive members of the array. Similarly, a wide 
character literal (§A2.6) may initialize an array of type wchar _ t. If the array has 
unknown size, the number of characters in the string, including the terminating null 
character, determines its size; if its size is fixed, the number of characters in the string, 
not counting the terminating null character, must not exceed the size of the array. 

The initializer for a union is either a single expression of the same type, or a brace-
enclosed initializer for the first member of the union. 

The first edition did not allow initialization of unions. The "first-member" rule 
is clumsy, but is hard to generalize without new syntax. Besides allowing 
unions to be explicitly initialized in at least a primitive way, this ANSI rule 
makes definite the semantics of static unions not explicitly initialized. 

An aggregate is a structure or array. If an aggregate contains members of aggregate 
type, the initialization rules apply recursively. Braces may be elided in the initialization 
as follows: if the initializer for an aggregate's member that is itself an aggregate begins 
with a left brace, then the succeeding comma-separated list of initializers initializes the 



110 REFERENCE MANUAL APPENDIX A 

members of the subaggregate; it is erroneous for there to be more initializers than 
members. If, however, the initializer for a subaggregate does not begin with a left brace, 
then only enough elements from the list are taken to account for the members of the 
subaggregate; any remaining members are left to initialize the next member of the 
aggregate of which the subaggregate is a part. 

For example, 
int x[] = { 1, 3, 5 }; 

declares and initializes xas a !-dimensional array with three members, since no size was 
specified and there are three initializers. 

float y[4][3] = { 
{ 1, 3, 5 }, 
{ 2, 4, 6 }, 
{ 3, 5, 7 }, 

} ; 
is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array 
y[O], namely y[O][O], y[0][1], and y[0][2]. Likewise the next two lines initial-
ize y [ 1 ] and y [ 2]. The initializer ends early, and therefore the elements of y [ 3] are 
initialized with 0. Precisely the same effect could have been achieved by 

float y[4][3] = { 
1, 3, 5, 2, 4, 6, 3, 5, 7 

} ; 
The initializer for y begins with a left brace, but that for y [ 0] does not; therefore three 
elements from the list are used. Likewise the next three are taken successively for y [ 1 ] 
and then for y [ 2 ] . Also, 

float y[4][3] = { 
{ 1 }, { 2 }, { 3 }, { 4 } 

} ; 
initializes the first column of y (regarded as a two-dimensional array) and leaves the 
rest 0. 

Finally, 
char msq[] = "Syntax error on line "s\n"; 

shows a character array whose members are initialized with a string; its size includes the 
terminating null character. 

A8.8 Type Namea 

In several contexts (to specify type conversions explicitly with a cast, to declare 
parameter types in function declarators, and as an argument of sizeof) it is necessary 
to supply the name of a data type. This is accomplished using a type name, which is 
syntactically a declaration for an object of that type omitting the name of the object. 

type-name: 
specifier-qualifier-list abstract -declarator opt 

abstract -declarator: 
pointer 
pointer opt direct -abstract -declarator 



SECTION AS DECLARATIONS lll 

direct -abstract -declarator: 
( abstract-declarator ) 
direct -abstract -declarator opt [ constant -expressionopt ] 
direct-abstract-declaratoropt parameter-type-list0P1 ) 

It is possible to identify uniquely the location in the abstract-declarator where the identi-
fier would appear if the construction were a declarator in a declaration. The named type 
is then the same as the type of the hypothetical identifier. For example, 

int 
int * 
int *[3] 
int ( *) [] 
int *() 
int (*[])(void) 

name respectively the types "integer," "pointer to integer," "array of 3 pointers to 
integers," "pointer to an array of an unspecified number of integers," "function of 
unspecified parameters returning pointer to integer," and "array, of unspecified size, of 
pointers to functions with no parameters each returning an integer." 

A8.9 Typedef 

Declarations whose storage class specifier is typedef do not declare objects; instead 
they define identifiers that name types. These identifiers are called typedef names. 

typedef-name: 
identifier 

A typedef declaration attributes a type to each name among its declarators in the 
usual way (see §8.6). Thereafter, each such typedef name is syntactically equivalent to 
a type specifier keyword for the associated type. 

For example, after 
typedef lonq Blockno, *Blockptr; 
typedef struct { double r, theta; } Complex; 

the constructions 
Blockno b; 
extern Blockptr bp; 
Complex z, *ZP; 

are legal declarations. The type of b is lonq, that of bp is "pointer to lonq," and that 
of z is the specified structure; zp is a pointer to such a structure. 

typedef does not introduce new types, only synonyms for types that could be speci-
fied in another way. In the example, b has the same type as any other lonq object. 

Typedef names may be redeclared in an inner scope, but a non-empty set of type 
specifiers must be given. For example, 

extern Blockno; 
does not redeclare Blockno, but 

extern int Blockno; 
does. 

A8.10 Type Equivalence 

Two type specifier lists are equivalent if they contain the same set of type specifiers, 
taking into account that some specifiers can be implied by others (for example, lonq 



222 REFERENCE MANUAL APPENDIX A 

alone implies long int). Structures, unions, and enumerations with different tags are 
distinct, and a tagless union, structure, or enumeration specifies a unique type. 

Two types are the same if their abstract declarators (§A8.8), after expanding any 
typedef types, and deleting any function parameter identifiers, are the same up to 
equivalence of type specifier lists. Array sizes and function parameter types are signifi-
cant. 

A9. Statements 
Except as described, statements are executed in sequence. Statements are executed 

for their effect, and do not have values. They fall into several groups. 
statement: 

labeled -statement 
expression-statement 
compound -statement 
selection-statement 
iteration-statement 
jump-statement 

A9.1 Labeled Statements 

Statements may carry label prefixes. 
labeled -statement: 

identij1er : statement 
case constant-expression : statement 
default : statement 

A label consisting of an identifier declares the identifier. The only use of an identifier 
label is as a target of goto. The scope of the identifier is the current function. Because 
labels have their own name space, they do not interfere with other identifiers and cannot 
be redeclared. See §A 11.1. 

Case labels and default labels are used with the switch statement (§A9.4). The 
constant expression of case must have integral type. 

Labels in themselves do not alter the flow of control. 

A9.2 Expression Statement 

Most statements are expression statements, which have the form 
expression-statement: 

expressionopt ; 
Most expression statements are assignments or function calls. All side effects from the 
expression are completed before the next statement is executed. If the expression is 
missing, the construction is called a null statement; it is often used to supply an empty 
body to an iteration statement or to place a label. 

A9.3 Compound Statement 

So that several statements can be used where one is expected, the compound state-
ment (also called "block") is provided. The body of a function definition is a compound 
statement. 



SECTION A9 STATEMENTS 223 

compound -statement: 
{ declaration-/istopt statement-listopt } 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

If an identifier in the declaration-list was in scope outside the block, the outer declara· 
tion is suspended within the block (see §All.l), after which it resumes its force. An 
identifier may be declared only once in the same block. These rules apply to identifiers 
in the same name space (§All); identifiers in different name spaces are treated as dis-
tinct. 

Initialization of automatic objects is performed each time the block is entered at the 
top, and proceeds in the order of the declarators. If a jump into the block is executed, 
these initialization& are not performed. Initializations of static objects are performed 
only once, before the program begins execution. 

A9.4 Selection Statements 

Selection statements choose one of several flows of control. 
selection-statement: 

if ( expression ) statement 
if ( expression ) statement else statement 
switch ( expression ) statement 

In both forms of the if statement, the expression, which must have arithmetic or 
pointer type, is evaluated, including all side-effects, and if it compares unequal to 0, the 
first substatement is executed. In the second form, the second substatement is executed 
if the expression is 0. The else ambiguity is resolved by connecting an else with the 
last encountered else-less if at the same block nesting level. 

The switch statement causes control to be transferred to one of several statements 
depending on the value of an expression, which must have integral type. The substate· 
ment controlled by a switch is typically compound. Any statement within the sub-
statement may be labeled with one or more case labels (§A9.1). The controlling 
expression undergoes integral promotion (§A6.1), and the case constants are converted to 
the promoted type. No two of the case constants associated with the same switch may 
have the same value after conversion. There may also be at most one default label 
associated with a switch. Switches may be nested; a case or default label is associ-
ated with the smallest switch that contains it. 

When the switch statement is executed, its expression is evaluated, including all 
side effects, and compared with each case constant. If one of the case constants is equal 
to the value of the expression, control passes to the statement of the matched case 
label. If no case constant matches the expression, and if there is a default label, con-
trol passes to the labeled statement. If no case matches, and if there is no default, 
then none of the substatements of the switch is executed. 

In the first edition of this book, the controlling expression of switch, and the 
case constants, were required to have int type. 



124 REFERENCE MANUAL APPENDIX A 

A9.5 Iteration Statements 

Iteration statements specify looping. 
iteration-statement: 

while ( expression ) statement 
do statement while ( expression ) ; 
for ( expressionopr ; expressionopr ; expressionopr ) statement 

In the while and do statements, the substatement is executed repeatedly so long as 
the value of the expression remains unequal to 0; the expression must have arithmetic or 
pointer type. With while, the test, including all side effects from the expression, occurs 
before each execution of the statement; with do, the test follows each iteration. 

In the for statement, the first expression is evaluated once, and thus specifies ini-
tialization for the loop. There is no restriction on its type. The second expression must 
have arithmetic or pointer type; it is evaluated before each iteration, and if it becomes 
equal to 0, the for is terminated. The third expression is evaluated after each iteration, 
and thus specifies a re-initialization for the loop. There is no restriction on its type. 
Side-effects from each expression are completed immediately after its evaluation. If the 
substatement does not contain continue, a statement 

for ( expression} ; expression2 ; expression3 ) statement 
is equivalent to 

expression} ; 
while ( expression2 ) { 

statement 
expression3 ; 

} 

Any of the three expressions may be dropped. A missing second expression makes 
the implied test equivalent to testing a non-zero constant. 

A9.6 Jump Statements 

Jump statements transfer control unconditionally. 
jump-statement: 

goto identifier ; 
continue ; 
break ; 
return expressionopr 

In the goto statement, the identifier must be a label (§A9.l) located in the current 
function. Control transfers to the labeled statement. 

A continue statement may appear only within an iteration statement. It causes 
control to pass to the loop-continuation portion of the smallest enclosing such statement. 
More precisely, within each of the statements 

while ( ... ) { do { for ( ... ) { 

contin: ; 
} 

contin: 
} while ' ( ... ) ; con tin: ; 

} 

a continue not contained in a smaller iteration statement is the same as goto 
con tin. 

A break statement may appear only in an iteration statement or a switch state-
ment, and terminates execution of the smallest enclosing such statement; control passes 



SECTION AlO EXTERNAL DECLARATIONS 225 

to the statement following the terminated statement. 
A function returns to its caller ·by the return statement. When return is followed 

by an expression, the value is returned to the caller of the function. The expression is 
converted, as if by assignment, to the type returned by the function in which it appears. 

Flowing off the end of a function is equivalent to a return with no expression. In 
either case, the returned value is undefined. 

A 10. External Declarations 
The unit of input provided to the C compiler is called a translation unit; it consists of 

a sequence of external declarations, which are either declarations or function definitions. 
translation-unit: 

external-declaration 
translation-unit external-declaration 

external-declaration: 
function-definition 
declaration 

The scope of external declarations persists to the end of the translation unit in which 
they are declared, just as the effect of declarations within blocks persists to the end of 
the block. The syntax of external declarations is the same as that of all declarations, 
except that only at this level may the code for functions be given. 

A 1 0. 1 Function Definitions 

Function definitions have the form 
function-definition: 

declaration-specifiers0P1 declarator dec/aration-listopt compound-statement 
The only storage-class specifiers allowed among the declaration specifiers are extern or 
static; see §All.2 for the distinction between them. 

A function may return an arithmetic type, a structure, a union, a pointer, or void, 
but not a function or an array. The declarator in a function declaration must specify 
explicitly that the declared identifier has function type; that is, it must contain one of 
the forms (see §A8.6.3) 

direct-declarator ( parameter-type-list ) 
direct-declarator ( identifier-listopt ) 

where the direct-declarator is an identifier or a parenthesized identifier. In particular, it 
must not achieve function type by means of a typedef. 

In the first form, the definition is a new-style function, and its parameters, together 
with their types, are declared in its parameter type list; the declaration-list following the 
function's declarator must be absent. Unless the parameter type list consists solely of 
void, showing that the function takes no parameters, each declarator in the parameter 
type list must contain an identifier. If the parameter type list ends with " 9 ••• " then 
the function may be called with more arguments than parameters; the va_arg macro 
mechanism defined in the standard header <stdarg. h> and described in Appendix B 
must be used to refer to the extra arguments. Variadic functions must have at least one 
named parameter. 

In the second form, the definition is old-style: the identifier list names the 



226 REFERENCE MANUAL APPENDIX A 

parameters, while the declaration list attributes types to them. If no declaration is given 
for a parameter, its type is taken to be int. The declaration list must declare only 
parameters named in the list, initialization is not permitted, and the only storage-class 
specifier possible is register. 

In both styles of function definition, the parameters are understood to be declared 
just after the beginning of the compound statement constituting the function's body, and 
thus the same identifiers must not be redeclared there (although they may, like other 
identifiers, be redeclared in inner blocks). If a parameter is declared to have type 
"array of type," the declaration is adjusted to read "pointer to type;" similarly, if a 
parameter is declared to have type "function returning type," the declaration is adjusted 
to read "pointer to function returning type." During the call to a function, the argu-
ments are converted as necessary and assigned to the parameters; see §A 7 .3.2. 

New-style function definitions are new with the ANSI standard. There is also a 
small change in the details of promotion; the first edition specified that the 
declarations of float parameters were adjusted to read double. The differ-
ence becomes noticeable when a pointer to a parameter is generated within a 
function. 

A complete example of a new-style function definition is 
int max(int a, int b, int c) 
{ 

} 

int m; 
m = (a > b) ? a : b; 
return (m > c) ? m : c; 

Here int is the declaration specifier; max ( int a, int b, int c) is the function's 
declarator, and { o o o } is the block giving the code for the function. The correspond-
ing old-style definition would be 

int max(a, b, c) 
int a, b, c; 
{ 

} 
where now int max (a, b, c) is the declarator, and int a, b, c; is the declara-
tion list for the parameters. 

A 10.2 External Declarations 

External declarations specify the characteristics of objects, functions and other iden-
tifiers. The term "external" refers to their location outside functions, and is not directly 
connected with the extern keyword; the storage class for an externally-declared object 
may be left empty, or it may be specified as extern or static. 

Several external declarations for the same identifier may exist within the same trans-
lation unit if they agree in type and linkage, and if there is at most one definition for the 
identifier. 

Two declarations for an object or function are deemed to agree in type under the 
rules discussed in §A8.10. In addition, if the declarations differ because one type is an 
incomplete structure, union, or enumeration type (§A8.3) and the other is the 
corresponding completed type with the same tag, the types are taken to agree. More-
over, if one type is an incomplete array type (§A8.6.2) and the other is a completed 



SECTION All SCOPE AND LINKAGE 227 

array type, the types, if otherwise identical, are also taken to agree. Finally, if one type 
specifies an old-style function, and the other an otherwise identical new-style function, 
with parameter declarations, the types are taken to agree. 

If the first external declaration for a function or object includes the static speci-
fier, the identifier has internal linkage; otherwise it has external linkage. Linkage is 
discussed in §All.2. 

An external declaration for an object is a definition if it has an initializer. An exter-
nal object declaration that does not have an initializer, and does not contain the extern 
specifier, is a tentative definition. If a definition for an object in a ttanslation 
unit, any tentative definitions are treated merely as redundant declarations. If no defini-
tion for the opject appears in the translation unit, all its tentative definitions become a 
single definition with initializer 0. 

Each object must have exactly one definition. For objects with internal linkage, this 
rule applies separately to each translation unit, because internally-linked objects are 
unique to a translation unit. For objects with external linkage, it applies to the entire 
program. 

Although the one-definition rule is formulated somewhat differently in the first 
edition of this book, it is in· effect identical to the one 'Stated here. Some imple-
mentations relax it by generalizing the notion of tentative definition. In the 
alternate formulation, which is usual in UNIX systems and recognized as a com-
mon extension by the Standard, all the tentative definitions for an externally-
linked object, throughout all the translation units of a program, are considered 
together instead of in each· translation unit separately. If a definition occurs 
somewhere in the program, then the tentative definitions become merely 
declarations, but if no definition appears, then all its tentative definitions 
become a definition with initializer 0. 

A 11. Scope and Linkage 
A program need not all be compiled at one time: the source text may be kept in 

several files containing translation units, and precompiled routines may be loaded from 
libraries. Communication among the functions of a program may be carried out both 
through calls and through manipulation of external data. 

Therefore, there are two kinds of scope to consider: first, the lexical scope of an 
identifier, which is the region of the program text within which the identifier's charac-
teristics are understood; and seci:>nd, the scope associated with objects and functions with 
external linkage, which determines the connections between identifiers in separately com-
piled translation units. 

A 11. 1 Lexical Scope 

Identifiers fall into several name spaces that do not interfere with one another; the 
same identifier may be used for different purposes, even in the same scope, if the uses 
are in different name spaces. These classes are: objects, functions, typedef names, and 
enum constants; labels; tags of structures, unions, and enumerations; and members of 
each structure or union individually. 

These rules differ in several ways from those described in the first edition of 
this manual. Labels did not previo\lsly have their own name space; tags of 
structures and unions each had a separate space, and in some implementations 



128 REFERENCE MANUAL APPENDIX A 

enumeration tags did as well; putting different kinds of tags into the same space 
is a new restriction. The most important departure from the first edition is that 
each structure or union creates a separate name space for its members, so that 
the same name may appear in several different structures. This rule has been 
common practice for several years. 

The lexical scope of an object or function identifier in an external declaration begins 
at the end of its declarator and persists to the end of the translation unit in which it 
appears. The scope of a parameter of a function definition begins at the start of the 
block defining the function, and persists through the function; the scope of a parameter 
in a function declaration ends at the end of the declarator. The scope of an identifier 
declared at the head of a block begins at the end of its declarator, and persists to the 
end of the block. The scope of a label is the whole of the function in which· it appears. 
The scope of a structure, union, or enumeration tag, or an enumeration constant, begins 
at its appearance in a type specifier, and persists to the end of the translation unit (for 
declarations at the external level) or to the end of the block (for declarations within a 
function). 

If an identifier is explicitly declared at the head of a block, including the block con-
stituting a function, any declaration of the identifier outside the block is suspended until 
the end of the block. 

A 11.2 Linkage 

Within a translation unit, all declarations of the same object or function identifier 
with internal linkage refer to the same thing, and the object or function is unique to that 
translation unit. All declarations for the same object or function identifier with external 
linkage refer to the same thing, and the object or function is shared by the entire pro-
gram. 

As discussed in §A10.2, the first external declaration for an identifier gives the iden-
tifier internal linkage if the static specifier is used, external linkage otherwise. If a 
declaration for an identifier within a block does not include the extern specifier, then 
the identifier has no linkage and is unique to the function. If it does include extern, 
and an external declaration for the identifier is active in the scope surrounding the block, 
then the identifier has the same linkage as the external declaration, and refers to the 
same object or function; but if no external declaration is visible, its linkage is external. 

A 12. Preprocessing 
A preprocessor performs macro substitution, conditional compilation, and inclusion of 

named files. Lines beginning with #, perhaps preceded by white space, communicate 
with this preprocessor. The syntax of these lines is independent of the rest of the 
language; they may appear anywhere and have effect that lasts (independent of scope) 
until the end of the translation unit. Line boundaries are significant; each line is 
analyzed individually (but see §Al2.2 for how to adjoin lines). To the preprocessor, a 
token is any language token, or a character sequence giving a file name as in the 
#include directive (§A12.4); in addition, any character not otherwise defined is taken 
as a token. However, the effect of white space characters other than space and horizon-
tal tab is undefined within preprocessor lines. 

Preprocessing itself takes place in several logically successive phases that may, in a 



SECTION Al2 PREPROCESSING 229 

particular implementation, be condensed. 
1. First, trigraph sequences as described in §A 12.1 are replaced by their equivalents. 

Should the operating system environment require it, newline characters are intro-
duced between the lines of the source file. 

2. Each occurrence of a backslash character \ followed by a newline is deleted, thus 
splicing lines (§A12.2). 

3. The program is split into tokens separated by white-space characters; comments are 
replaced by a single space. Then preprocessing directives are obeyed, and macros 
(§§A12.3-Al2.10) are expanded. 

4. Escape sequences in character constants and string literals (§§A2.5.2, A2.6) are 
replaced by their equivalents; then adjacent string literals are concatenated. 

5. The result is translated, then linked together with other programs and libraries, by 
collecting the necessary programs and data, and connecting external function and 
object references to their definitions. 

A 12. 1 Trigraph Sequences 

The character set of C source programs is contained within seven-bit ASCII, but is a 
superset of the ISO 646-1983 Invariant Code Set. In order to enable programs to be 
represented in the reduced set, all occurrences of the following trigraph sequences are 
replaced by the corresponding single character. This replacement occurs before any 
other processing. 

??= # 
??/ \ 
??' 

No other such replacements occur. 

??( 
??) 
??I 

Trigraph sequences are new with the ANSI standard. 

A 12.2 Line Splicing 

??< { 
??> } 
??-

Lines that end with the backslash character \ are folded by deleting the backslash 
and the following newline character. This occurs before division into tokens. 

A 12.3 Macro 1\)efinition and Expansion 

A control line of the form 
# define identifier token-sequence 

causes the preprocessor to replace subsequent instances of the identifier with the given 
sequence of tokens; leading and trailing white space around the token sequence is dis-
carded. A second #define for the same identifier is erroneous unless the second token 
sequence is identical to the first, where all white space separations are taken to be 
equivalent. 

A line of the form 
# de£ ine identifier ( identifier-list ) token-sequence 

where there is no space between the first identifier and the ( , is a macro definition with 
parameters given by the identifier list. As with the first form, leading and trailing white 
space around the token sequence is discarded, and the macro may be redefined only with 



230 REFERENCE MANUAL APPENDIX A 

a definition in which the number and spelling of parameters, and the token sequence, is 
identical. 

A control line of the form 
# undef identifier 

causes the identifier's preprocessor definition to be forgotten. It is not erroneous to 
apply #undef to an unknown identifier. 

When a macro has been defined in the second form, subsequent textual instances of 
the macro identifier followed by optional white space, and then by (, a sequence of 
tokens separated by commas, and a ) constitute a call of the macro. The arguments of 
the call are the comma-separated token sequences; commas that are quoted or protected 
by nested parentheses do not separate arguments. During collection, arguments are 
macro-expanded. The number of arguments in the call must match the number of 
parameters in the definition. After the arguments are isolated, leading and trailing 
white space is removed from them. Then the token sequence resulting from each argu-
ment is substituted for each unquoted occurrence of the corresponding parameter's iden-
tifier in the replacement token sequence of the macro. Unless the parameter in the 
replacement sequence is preceded by #, or preceded or followed by ##, the argument 
tokens are examined for macro calls, and expanded as necessary, just before insertion. 

Two special operators influence the replacement process. First, if an occurrence of a 
parameter in the replacement token sequence is immediately preceded by #, string 
quotes ( ") are placed around the corresponding parameter, and then both the # and the 
parameter identifier are replaced by the quoted argument. A \ character is inserted 
before each " or \character that appears surrounding, or inside, a string literal or char-
acter constant in the argument. 

Second, if the definition token sequence for either kind of macro contains a ## 
operator, then just after replacement of the parameters, each ##is deleted, together with 
any white space on either side, so as to concatenate the adjacent tokens and form a new 
token. The effect is undefined if invalid tokens are produced, or if the result depends on 
the order of processing of the ##operators. Also, ##may not appear at the beginning 
or end of a replacement token sequence. 

In both kinds of macro, the replacement token sequence is repeatedly rescanned for 
more defined identifiers. However, once a given identifier has been replaced in a given 
expansion, it is not replaced if it turns up again during rescanning; instead it is left 
unchanged. 

Even if the final value of a macro expansion begins with #, it is not taken to be a 
preprocessing directive. 

The details of the macro-expansion process are described more precisely in the 
ANSI standard than in the first edition. The most important change is the addi-
tion of the # and ## operators, which make quotation and concatenation admis-
sible. Some of the new rules, especially those involving concatenation, are 
bizarre. (See example below.) 

For example, this facility may be used for "manifest constants," as in 
#define TABSIZE 100 
int tabletTABSIZE]; 

The definition 
#define ABSDIFF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a)) 

defines a macro to return the absolute value of the difference between its arguments. 
Unlike a function to do the same thing, the arguments and returned value may have any 



SECTION Al2 PREPROCESSING 231 

arithmetic type or even be pointers. Also, the arguments, which might have side effects, 
are evaluated twice, once for the test and once to produce the value. 

Given the definition 
#define tempfile(dir) #dir "/%s" 

the macro call tempfile(/usr/tmp) yields 
"/usr/tmp" "/%s" 

which will subsequently be catenated into a single string. After 
#define cat(x, y) x ## y 

the call cat ( var, 123) yields var 123. However, the call cat (cat ( 1, 2) , 3) ) is 
undefined: the presence of ## prevents the arguments of the outer call from being 
expanded. Thus it produces the token string 

cat ( 1 2 ) 3 
and ) 3 (the catenation of the last token of the first argument with the first token of the 
second) is not a legal token. If a second level of macro definition is introduced, 

#define xcat(x,y) cat(x,y) 
things work more smoothly; xca t ( xca t ( 1 , 2 ) , 3 ) does produce 12 3, because the 
expansion of xcat itself does not involve the ##operator. 

Likewise, ABSDIFF ( ABSDIFF (a, b) , c) produces the expected, fully-expanded 
result. 

A 12.4 File Inclusion 

A control line of the form 
# include <filename> 

causes the replacement of that line by the entire contents of the file filename. The 
characters in the name filename must not include > or newline, and the effect is unde-
fined if it contains any of ", ', \, or I*· The named file is searched for in a sequence 
of implementation-dependent places. 

Similarly, a control line of the form 
# include ''filename" 

searches first in association with the original source file (a deliberately implementation-
dependent phrase), and if that search fails, then as if in the first form. The effect of 
using ', \, or I* in the filename remains undefined, but > is permitted. 

Finally, a directive of the form 
# include token-sequence 

not matching one of the previous forms is interpreted by expanding the token sequence 
as for normal text; one of the two forms with < ... > or " ... " must result, and it is then 
treated as previously described. 

#include files may be nested. 

A 12.5 Conditional Compilation 

Parts of a program may be compiled conditionally, according to the following 
schematic syntax. 



131 REFERENCE MANUAL 

preprocessor-conditional: 
if-line text elif-parts e/se-partopt #endif 

if-line: 
# if constant-expression 
# ifdef identifier 
# ifndef identifier 

elif-parts: 
elif-line text 
elif-partsopt 

elif-line: 
# elif constant-expression 

else-part: 
else-line text 

else-line: 
# else 

APPENDIX A 

Each of the directives (if-line, elif-line, else-line, and #endif) appears alone on a line. 
The constant expressions in #if and subsequent #elif lines are evaluated in order until 
an expression with a non-zero value is found; text following a line with a zero value is 
discarded. The text following the successful directive line is treated normally. "Text" 
here refers to any material, including preprocessor lines, that is not part of the condi-
tional structure; it may be empty. Once a successful #if or #elif line has been found 
and its text processed, succeeding #elif and #else lines, together with their text, are 
discarded. If all the expressions are zero, and there is an #else, the text following the 
#else is treated normally. Text controlled by inactive arms of the conditional is 
ignored except for checking the nesting of conditionals. . 

The constant expression in #if and #elif is subject to ordinary macro replace-
ment. Moreover, any expressions of the form 

defined identifier 
or 

defined ( identifier ) 
are replaced, before scanning for macros, by 1 L if the identifier is defined in the prepro-
cessor, and by OL if not. Any identifiers remaining after macro expansion are replaced 
by OL. Finally, each integer constant is considered to be suffixed with L, so that all 
arithmetic is taken to be long or unsigned long. 

The resulting constant expression (§A7.19) is restricted: it must be integral, and may 
not contain sizeof, a cast, or an enumeration constant. 

The control lines 
#ifdef identifier 
#ifndef identifier 

are equivalent to 

respectively. 

I if defined identifier 
I if I defined identifier 

#elif is new since the first edition, although it has been available in some 
preprocessors. The defined preprocessor operator is also new. 



SECTION A12 PREPROCESSING 233 

A 12.6 Line Control 

For the benefit of other preprocessors that generate C programs, a line in one of the 
forms 

I line constant "filename" 
I line constant 

causes the compiler to believe, for purposes of error diagnostics, that the line number of 
the next source line is given by the decimal integer constant and the current input file is 
named by the identifier. If the quoted filename is absent, the remembered name does 
not change. Macros in the line are expanded before it is interpreted. 

A 12.7 Error Generation 

A preprocessor line of the form 
I error token-sequenceopr 

causes the processor to write a diagnostic message that includes the token sequence. 

A 12.8 Pragmas 

A control line of the form 
I pragma token-sequenceopr 

causes the processor to perform an implementation-dependent action. An unrecognized 
pragma is ignored. 

A 12.9 Null Directive 

A preprocessor line of the form 
I 

has no effect. 

A12.10 Predefined Names 

Several identifiers are predefined, and expand to produce special information. They, 
and also the preprocessor expression operator defined, may not be undefined or rede-
fined. 

LINE 
FILE 

__ DATE __ 

TIME __ 

STDC __ 

A decimal constant containing the current source line number. 
A string literal containing the name of the file being compiled. 
A string literal containing the date of compilation, in the form 
"Mmm dd yyyy". 
A string literal containing the time of compilation, in the form 
"hh:mm:ss". 
The constant 1. It is intended that this identifier be defined to be 1 
only in standard-conforming implementations. 

#error and #pragma are new with the ANSI standard; the 
predefined preprocessor macros are new, but some of them 
have been available in some implementations. 



134 REFERENCE MANUAL APPENDIX A 

A 13. Grammar 

Below is a recapitulation of the grammar that was given throughout the earlier part 
of this appendix. It has exactly the same content, but is in a different order. 

The grammar has undefined terminal symbols integer-constant, character-constant, 
floating-constant, identifier, string, and enumeration-constant; the typewriter style 
words and symbols are terminals given literally. This grammar can be transformed 
mechanically into input acceptable to an automatic parser-generator. Besides adding 
whatever syntactic marking is used to indicate alternatives in productions, it is necessary 
to expand the "one or• constructions, and (depending on the rules of the parser-
generator) to duplicate each production with an opt symbol, once with the symbol and 
once without. With one further change, namely deleting the production typedef-name: 
identifier and making typedef-name a terminal symbol, this grammar is acceptable to 
the YACC parser-generator. It has only one conflict, generated by the if-else ambi-
guity. 

translation-unit: 
external-declaration 
translation-unit external-declaration 

external-declaration: 
function-definition 
declaration 

function-definition: 
declaration-specifiers0,, declarator declaration-list0,, compound-statement 

declaration: 
declaration-specifiers init -declarator-list opt 

declaration-list: 
declaration 
declaration-list declaration 

declaration -specifiers: 
storage-class-specifier declaration-specifiersop, 
type-specifier declaration-specifiersopt 
type-qualifier declaration-specifiers0,, 

storage-class-specifier: one of 
auto register static extern typedef 

type-specifier: one of 
void char short int long float double signed 

unsigned struct-or-union-specifier · enum-specifier typedef-name 
type-qualifier: one of 

const volatile 
struct -or-union-specifier: 

struct-or-union identifier0,, { struct-declaration-list } 
struct-or-union identifier 

struct-or-union: one of 
struct union 

struct -declaration -list: 
struct -declaration 
struct -declaration -list struct -declaration 



SECTION Al3 

init -declarator-list: 
init -declarator 
init-declarator-list , init-declarator 

init -declarator: 
declarator 
declarator = initializer 

struct -declaration: 
specifier-qualifier-list struct -declarator-list 

specifier-qualifier-list: 
type-specifier specifier-qualifier-listopt 
type-qualifier specifier-qualifier-listopt 

struct-declarator-list: 
struct-declarator 
struct-declarator-list , struct-declarator 

struct -declarator: 
declarator 
declaratoropt : constant-expression 

enum -specifier: 
enum identifieropt { enumerator-list } 
enum identifier 

enumerator-list: 
enumerator 
enumerator-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

declarator: 
pointer opt direct -declarator 

direct -declarator: 
identifier 
( declarator ) 
direct-declarator [ constant-expressionopt ] 
direct-declarator ( parameter-type-list ) 
direct-declarator ( identifier-listopt ) 

pointer: 
* type-qualifier-listopt 
* type-qualifier-listopt pointer 

type-qualifier-list: 
type-qualifier 
type-qualifier-list type-qualifier 

parameter-type-list: 
parameter-list 
parameter-list , 

parameter-list: 
parameter-declaration 
parameter-list , parameter-declaration 

GRAMMAR 235 



236 REFERENCE MANUAL 

parameter-declaration: 
declaration-specifiers declarator 
declaration -specifiers abstract -declarator opt 

identifier-list: 
identifier 
identifier-list , identifier 

initia/izer: 
assignment -expression 
{ initializer-list } 
{ initializer-list , } 

initializer-list: 
initializer 
initializer-list , initializer 

type-name: 
specifier-qualifier-list abstract -declarator opt 

abstract -declarator: 
pointer . 
pointer opt direct-abstract-declarator 

direct -abstract -declarator: 
( abstract -declarator ) 
direct -abstract -declarator opt 
direct -abstract -declarator opt 

typedef-name: 
identifier 

statement: 
labeled -statement 
expression-statement 
compound -statement 
selection-statement 
iteration-statement 
jump-statement 

labeled -statement: 
identifier : statement 

constant -expressionopt 
parameter-type-listopt 

case constant-expression statement 
default : statement 

expression-statement: 
expressionop, ; 

compound -statement: 
{ declaration-listopt statement-listopt } 

statement-list: 
statement 
statement-list statement 

selection-statement: 
if ( expression ) statement 
if ( expression ) statement else statement 
switch ( expression ) statement 

APPENDIX A 



SECTION Al3 GRAMMAR 237 

iteration-statement: 
while ( expression ) statement 
do statement while ( expression ) ; 
for ( expressionop, ; expressionopt ; expressionopt ) statement 

jump -statement: 
goto identifier 
continue ; 
break ; 
return expressionopt 

expression: 
assignment -expression 
expression , assignment-expression 

assignment -expression: 
conditional-expression 
unary-expression assignment -operator assignment -expression 

assignment-operator: one of 
= *= I= %= += -= <<= >>= &= 

conditional-expression: 
= I= 

? expression : conditional-expression 

constant -expression: 
conditional-expression 

-expression: 
logical-AND-expression 

II logical-AND-expression 

logical-AND-expression: 
-expression 

logical-AND-expression && 
-expression: 

-expression: 
AND-expression 

"AND-expression 
AND-expression: 

equality-expression 
AND-expression & equality-expression 

equality-expression: 
relational-expression 
equality-expression == relational-expression 
equality-expression I= relational-expression 

relational-expression: 
shift -expression 
relational-expression < shift -expression 
relational-expression > shift-expression 
relational-expression < = shift -expression 
relational-expression > = shift -expression 



238 REFERENCE MANUAL 

shift -expression: 
additive-expression 
shift-expression << additive-expression 
shift-expression >> additive-expression 

additive-expression: 
multiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

multiplicative-expression: 
cast -expression 
multiplicative-expression * cast-expression 
multiplicative-expression I cast-expression 
multiplicative-expression %cast-expression 

cast-expressiotL· 
unary-expression 
( type-name ) cast-expression 

unary-expression: 
postfix-expression 
++ unary-expression 
-- unary-expression 
unary-operator cast -expression 
sizeof unary-expression 
sizeof ( type-name ) 

unary-operator: one of 
&. * + 

postfix-expression: 
primary-expression 
postfix-expression [ expression 1 
postfix-expression ( argument-expression-listopt 
postfix-expression • identifier 
postfix-expression -> identifier 
postfix-expression ++ 
postfix-expression --

primary-expressioll· 
identifier 
constant 
string 
( expression 

argument -expression-list: 
assignment -expression 
argument-expression-list , assignment-expression 

cons tam: 
integer-constant 
character-constant 
floating-constant 
enumeration-constant 

APPENDIX A 

The following grammar for the preprocessor summarizes the structure of control 
lines, but is not suitable for mechanized parsing. It includes the symbol text, which 
means ordinary program text, non-conditional preprocessor control lines, or complete 
preprocessor conditional constructions. 



SECTION Al3 GRAMMAR 239 

control-line: 
# define identifier token-sequence 
# define identifier( identifier , ... , identifier ) token-sequence 
# undef identifier 
# include <filename> 
# include "filename" 
# include token-sequence 
# line constant "filename" 
# 1 ine constant 
# error token-sequenceopt 
# praqma token-sequenceopt 
# 
preprocessor-conditional 

preprocessor-conditional: 
if-line text elif-parts e/se-partopt # endif 

if-line: 
# if constant-expression 
# ifdef identifier 
# ifndef identifier 

elif-parts: 
elif-line text 
e/if-partsop, 

e/if-line: 
# eli£ constant-expression 

else-part: 
else-line text 

else-line: 
# else 





APPENDix e: Standard Library 

This appendix is a summary of the library defined by the ANSI standard. The 
standard library is not part of the C language proper, but an environment that supports 
standard C will provide the function declarations and type and macro definitions of this 
library. We have omitted a few functions that are of limited utility or easily synthesized 
from others; we have omitted multi-byte characters; and we have omitted discussion of 
locale issues, that is, properties that depend on local language, nationality, or culture. 

The functions, types and macros of the standard library are declared in standard 
headers: 

<assert.h> <float.h> 
<ctype.h> <limits.h> 
<errno.h> <locale.h> 

A header can be accessed by 
#include <header> 

<math.h> 
<setjmp.h> 
<signal.h> 

<stdarg.h> 
<stddef.h> 
<stdio.h> 

<stdlib.h> 
<string.h> 
<time.h> 

Headers may be included in any order and any number of times. A header must be 
included outside of any external declaration or definition and before any use of anything 
it declares. A header need not be a source file. 

External identifiers that begin with an underscore are reserved for use by the library, 
as are all other identifiers that begin with an underscore and an upper-case letter or 
another underscore. 

81. Input and Output: <stdlo.h> 
The input and output functions, types, and macros defined in <stdio .·h> represent 

nearly one third of the library. 
A stream is a source or destination of data that may be associated with a disk or 

other peripheral. The library supports text streams and binary streams, although on 
some systems, notably UNIX, these are identical. A text stream is a sequence of lines; 
each line bas zero or more characters and is terminated by '\n'. An environment may 
need to convert a text stream to or from some other representation (such as mapping 
'\n' to carriage return and linefeed). A binary stream is a sequence of unprocessed 
bytes that record internal data, with the property that if it is written, then read back on 
the same system, it will compare equal. 

A stream is connected to a file or device by opening it; the connection is broken by 

241 



242 STANDARD LIBRARY APPENDIX 8 

closing the stream. Opening a file returns a pointer to an object of type FILE, which 
records whatever information is necessary to control the stream. We will use "file 
pointer" and "stream" interchangeably when there is no ambiguity. 

When a program begins execution, the three streams stdin, stdout, and stderr 
are already open. 

B 1. 1 File Operations 

The following functions deal with operations on files. The type size t is the 
unsigned integral type produced by the sizeof operator. 

FILE *fopen(const char *filename, const char *mode) 
fopen opens the named file, and returns a stream, or NULL if the attempt fails. 
Legal values for mode include 

"r 11 open text file for reading 
11 W11 create text file for writing; discard previous contents if any 
11 a 11 append; open or create text file for writing at end of file 
11 r+ 11 open text file for update (i.e., reading and writing) 
11 W+ 11 create text file for update; discard previous contents if any 
11 a+ 11 append; open or create text file for update, writing at end 

Update mode permits reading and writing the same file; fflush or a file-positioning 
function must be called between a read and a write or vice versa. If the mode 
includes b after the initial letter, as in 11 rb 11 or "w+b", that indicates a binary file. 
Filenames are limited to FILENAME_MAX characters. At most FOPEN_MAX files 
may be open at once. 

FILE *freopen(const char *filename, const char *mode, 
FILE *Stream) 

freopen opens the file with the specified mode and associates the stream with it. It 
returns stream, or NULL if an error occurs. freopen is normally used to change 
the files associated with stdin, stdout, or stderr. 

int fflush(FILE *Stream) 
On an output stream, fflush causes any buffered but unwritten data to be written; 
on an input stream, the effect is undefined. It returns EOF for a wrtte error, and 
zero otherwise. fflush(NULL) flushes all output streams. 

int fclose(FILE *Stream) 
fclose flushes any unwritten data for stream, discards any unread buffered input, 
frees any automatically allocated buffer, then closes the stream. It returns EOF if 
any errors occurred, and zero otherwise. 

int remove(const char *filename) 
remove removes the named file, so that a subsequent attempt to open it will fail. It 
returns non-zero if the attempt fails. 

int rename(const char *Oldname, const char *newname) 
rename changes the name of a file; it returns non-zero if the attempt fails. 



SECTION Bl INPUT AND OUTPUT: <STDIO.H> 243 

FILE *tmpfile(void) 
tmpfile creates a temporary file of mode "wb+" that will be automatically 
removed when closed or when the program terminates normally. tmpfile returns a 
stream, or NULL if it could not create the file. 

char *tmpnam(char s[L_tmpnam]) 
tmpnam (NULL) creates a string that is not the name of an existing file, and returns 
a pointer to an internal static array. tmpnam( s) stores the string in s as well as 
returning it as the function value; s must have room for at least L_ tmpnam charac-
ters. tmpnam generates a different name each time it is called; at most TMP _MAX 
different names are guaranteed during execution of the program. Note that tmpnam 
creates a name, not a file. 

int setvbuf(FILE *Stream, char *buf, int mode, size_t size) 
setvbuf controls buffering for the stream; it must be called before reading, writing, 
or any other operation. A mode of _IOFBF causes full buffering, _IOLBF line 
buffering of text files, and _ IONBF no buffering. If buf is not NULL, it will be used 
as the buffer; otherwise a buffer will be allocated. size determines the buffer size. 
setvbuf returns non-zero for any error. 

void setbuf(FILE *Stream, char *buf) 
If buf is NULL, buffering is turned off for the stream. Otherwise, setbuf is 
equivalent to (void) setvbuf ( stream, buf, _ IOFBF, BUFSIZ). 

B 1.2 FQrmatted Output 

The print£ functions provide formatted output conversion. 

int fprintf(FILE *Stream, const char *format, ... ) 
fprintf converts and writes output to stream under the control of format. The 

return value is the number of characters written, or negative if an error occurred. 
The format string contains two types of objects: ordinary characters, which are 

copied to the output stream, and conversion specifications, each of which causes conver-
sion and printing of the next successive argument to fprintf. Each conversion specifi-
cation begins with the character %and ends with a conversion character. Between the % 
and the conversion character there may be, in order: 

• Flags (in any order), which modify the specification: 
-, which specifies left adjustment of the converted argument in its field. 
+, which specifies that the number will always be printed with a sign. 
space: if the first character is not a sign, a space will be prefixed. 
0: for numeric conversions, specifies padding to the field width with leading zeros. 
#, which specifies an alternate output form. For o, the first digit will be zero. For x or x, 
Ox or OX will be prefixed to a non-zero result. For e, E, f, g, and G, the output will always 
have a decimal point; for g and G, trailing zeros will not be removed. 

• A number specifying a minimum field width. The converted argument will be printed in a field 
at least this wide, and wider if necessary. If the converted argument has fewer characters than 
the field width it will be padded on the left (or right, if left adjustment has been requested) to 
make up the field width. The padding character is normally space, but is 0 if the zero padding 
flag is present. 



244 STANDARD LIBRARY APPENDIX B 

• A period, which separates the field width from the precision. 

• A number, the precision, that specifies the maximum number of characters to be printed from a 
string, or the number of digits to be printed after the decimal point for e, E, or f conversions, or 
the number of significant digits for g or G conversion, or the minimum number of digits to be 
printed for an integer (leading Os will be added to make up the necessary width). 

• A length modifier h, 1 Oetter ell), or L. "h" indicates that the corresponding argument is to be 
printed as a short or unsigned short; "1" indicates that the argument is a long or 
unsigned long; "L" indicates that the argument is a long double. 

Width or precision or both may be specified as *• in which case the value is computed 
byconverting the next argument(s), which must be int. 

The conversion characters and their meanings are shown in Table 8-1. If the char-
acter after the " is not a conversion character, the behavior is undefined. 

TABLE 8-1. PRINTF CONVERSIONS 

CHARACTER ARGUMENT TYPE; CONVERTED TO 

d, i int; signed decimal notation. 
o int; unsigned octal notation (without a leading zero). 

x, X int; unsigned hexadecimal notation (without a leading Ox or 
ox), using abcdef for Ox or ABCDEF for OX. 

u int; unsigned decimal notation. 
c int; single character, after conversion to unsigned char. 
s char *; characters from the string are printed until a '\0' is 

reached or until the number of characters indicated by the pre-
cision have been printed. 

f double; decimal notation of the form [- ]mmm.ddd, where the 
number of d's is specified by the precision. The default preci-
sion is 6; a precision of 0 suppresses the decimal point. 

e, E double; decimal notation of the form [-]m.dddddde± xx or 
[-]m.ddddddE± xx, where the number of d's is specified by the 
precision. The default precision is 6; a precision of 0 suppresses 
the decimal point. 

g, G double; "e or "E is used if the exponent is less than -4 or 
greater than or equal to the precision; otherwise "f is used. 
Trailing zeros and a trailing decimal point are not printed. 

p void *; print as a pointer (implementation-dependent represen-
tation). 

n int *; the number of characters written so far by this call to 
print£ is written into the argument. No argument is con-
verted. 

" no argument is converted; print a "· 

int printf(const char *format, ... ) 
print£ ( ... ) is equivalent to fprintf ( stdout, ... ) . 



SECTION 81 INPUT AND OUTPUT: <STDIO.H> 245 

int sprintf(char *S, const char *format, ... ) 
sprint£ is the same as printf except that the output is written into the string s, 
terminated with '\0 '. s must be big enough to hold the result. The return count 
does not include the '\0 '. 

vprintf(const char *format, va_list arg) 
vfprintf(FILE *Stream, const char *format, va_list arg) 
vsprintf(char *S, const char *format, va_list arg) 

The functions vprintf, vfprintf, and vsprintf are equivalent to the 
corresponding printf functions, except that the variable argument list is replaced 
by arg, which has been initialized by the va_start macro and perhaps va_arg 
calls. See the discussion of <stdarg. h> in Section B7. 

B 1.3 Formatted Input 

The scanf functions deal with formatted input conversion. 

int fscanf(FILE *Stream, const char *format, •.. ) 
fscanf reads from stream under control of format, and assigns converted values 

through subsequent arguments, each of which must be a pointer. It returns when 
format is exhausted. fscanf returns EOF if end of file or an error occurs before any 
conversion; otherwise it returns the number of input items converted and assigned. 

The format string usually contains conversion specifications, which are used to direct 
interpretation of input. The format string may contain: 

• Blanks or tabs, which are ignored. 

• Ordinary characters (not "), which are expected to match the next non-white space character of 
the input stream. 

• Conversion specifications, consisting of a X, an optional assignment suppression character *• an 
optional number specifying a maximum field width, an optional h, 1, or L indicating the width 
of the target, and a conversion character. 

A conversion specification determines the conversion of the next input field. Nor-
mally the result is placed in the variable pointed to by the corresponding argument. If 
assignment suppression is indicated by *• as in "*S, however, the input field is simply 
skipped; no assignment is made. An input field is defined as a string of non-white space 
characters; it extends either to the next white space character or until the field width, if 
specified, is exhausted. This implies that scanf will read across line boundaries to find 
its input, since newlines are white space. (White space characters are blank, tab, new-
line, carriage return, vertical tab, and formfeed.)_ 

The conversion character indicates the interpretation of the input field. The 
corresponding argument must be a pointer. The legal conversion characters are shown in 
Table B-2. 

The conversion characters d, i, n, o, u, and x may be preceded by h if the argument 
is a pointer to short rather than int, or by 1 {letter ell) if the argument is a pointer 
to long. The conversion characters e, f, and g may be preceded by 1 if a pointer to 
double rather than float is in the argument list, and by L if a pointer to a long 
double. 



246 STANDARD LIBRARY APPENDIX B 

TABLE B-2. SCANF CONVERSIONS 

CHARACTER INPUT DATA; ARGUMENT TYPE 

d decimal integer; int *· 
i integer; int *· The integer may be in octal (leading O) or 

hexadecimal (leading Ox or ox). 
o octal integer (with or without leading zero); int *· 
u unsigned decimal integer; unsigned int *· 
x hexadecimal integer (with or without leading Ox or ox); int *· 
c characters; char *· The next input characters are placed in the 

indicated array, up to the number given by the width field; the 
default is 1. No '\0' is added. The normal skip over white 
space characters is suppressed in this case; to read the next 
non-white space character, use %1 s. 

s string of non-white space characters (not quoted); char *• 
pointing to an array of characters large enough to hold the 
string and a terminating '\0' that will be added. 

e, f, g floating-point number; float *· The input format for float's 
is an optional sign, a string of numbers possibly containing a 
decimal point, and an optional exponent field containing an E or 
e followed by a possibly signed integer. 

p pointer value as printed by printf ( "%p" ); void *· 
n writes into the argument the number of characters read so far 

by this call; int *· No input is read. The converted item count 
is not incremented. 

[. .. ] matches the longest non-empty string of input characters from 
the set between brackets; char *· A '\0' is added. [ ] ... ] 
includes ] in the set. 

[ " ... ] matches the longest non-empty string of input characters not 
from the set between brackets; char *· A '\0' is added. 
[ " ] ... ] includes ] in the set. 

% literal %; no assignment is made. 

int scanf(const char *format, ... ) 
scanf (. .. ) is identical to f scanf ( stdin, ... ) . 

int sscanf(char *S, const char *format, .•. ) 
sscanf ( s, ... ) is equivalent to scanf ( ... ) except that the input characters are 
taken from the string s. 

B 1.4 Character Input and Output Functions 

int fgetc(FILE *Stream) 
fgetc returns the next character of stream as an unsigned char (converted to 
an int), or EOF if end of file or error occurs. 



SECTION 81 INPUT AND OUTPUT: <STDIO.H> 247 

char *fgets(char *S, int n, FILE *Stream} 
fgets reads at most the next n-1 characters into the array s, stopping if a newline 
is encountered; the newline is included in the array, which is terminated by '\0 '. 
fgets returns s, or NULL if end of file or error occurs. 

int fputc(int c, FILE *Stream} 
fputc writes the character c (converted to an unsigned char) on stream. It 
returns the character written, or EOF for error. 

int fputs(const char *S, FILE *Stream} 
fputs writes the string s (which need not contain '\n ') on stream; it returns 
non-negative, or EOF for an error. 

int getc(FILE *Stream} 
getc is equivalent to fgetc except that if it is a macro, it may evaluate stream 
more than once. 

int getchar(void} 
get char is equivalent to getc ( stdin}. 

char *gets(char *S} 
gets reads the next input line into the array s; it replaces the terminating newline 
with '\0 '. It returns s, or NULL if end of file or error occurs. 

int putc(int c, FILE *Stream} 
putc is equivalent to fputc except that if it is a macro, it may evaluate stream 
more than once. 

int putchar(int c) 
put char ( c} is equivalent to putc ( c, stdout}. 

int puts(const char *S} 
puts writes the string s and a newline to stdout. It returns EOF if an error 
occurs, non-negative otherwise. 

int ungetc(int c, FILE *Stream} 
ungetc pushes c (converted to an unsigned chad back onto stream, where it 
will be returned on the next read. Only one character of pushback per stream is 
guaranteed. EOF may not be pushed back. ungetc returns the character pushed 
back, or EOF for error. 

B 1.5 Direct Input and Output Functions 

size_t fread(void *Ptr, size_t size, size_t nobj, FILE *Stream} 
fread reads from stream int-o the array ptr at most nobj objects of size size. 
fread returns the number of objects read; this may be less than the number 
requested. feof and ferror must be used to determine status. 

size_t fwrite(const void *Ptr, size_t size, size_t nobj, 
FILE *Stream) 

fwrite writes, from the array ptr, nobj objects of size size on stream. It 
returns the number of objects written, which is less than nobj on error. 



I 

148 STANDARD LIBRARY APPENDIX 8 

B 1.6 File Positioning Functions 

int fseek(FILE *Stream, long offset, int origin) 
fseek sets the file position for stream; a subsequent read or write will access data 
beginning at the new position. For a binary file, the position is set to offset char-
acters from origin, which may be SEEK_SET (beginning), SEEK_CUR (current 
position), or SEEK_END (end of file). For a text stream, offset must be zero, or a 
value returned by ftell (in which case origin must be SEEK_SET). fseek 
returns non-zero on error. 

long ftell(FILE *Stream) 
ftell returns the current file position for stream, or -1L on error. 

void rewind(FILE *Stream) 
rewind(fp) is equivalent to fseek(fp,OL,SEEK_SET); clearerr(fp). 

int fgetpos(FILE *Stream, fpos_t *Ptr) 
fgetpos records the current position in stream in *Ptr, for subsequent use by 
fsetpos. The type fpos_ t is suitable for recording such values. fgetpos 
returns non-zero on error. 

int fsetpos(FILE *Stream, const fpos_t *Ptr) 
fsetpos positions stream at the position recorded by fgetpos in *Ptr. 
fsetpos returns non-zero on error. 

81.7 Error Functions 

Many of the functions in the library set status indicators when error or end of file 
occur. These indicators may be set and tested explicitly. In addition, the integer expres-
sion errno (declared in <errno.h>) may contain an error number that gives further 
information about the most recent error. 

void clearerr(PILE *Stream) 
clearerr clears the end of file and error indicators for stream. 

int feof(FILE *Stream) 
feof returns non-zero if the end of file indicator for stream is set. 

int ferror(FILE *Stream) 
ferror returns non-zero if the error indicator for stream is set. 

void perror(const char *S) 
perror ( s) prints s and an implementation-defined error message corresponding to 
the integer in errno, as if by 

fprintf(stderr, "%s: %s\n", s, "error message") 
See strerror in Section B3. 

82. Character Class Tests: <ctype.h> 
The header <ctype . h> declares functions for testing characters. For each function, 

the argument is an int, whose value must be EOF or representable as an unsigned 



SECTION 83 STRING FUNCTIONS: <STRING.H> 249 

char, and the return value is an int. The functions return non-zero (true) if the argu-
ment c satisfies the condition described, and zero if not. 

isalnwn(c) 
isalpha(c) 
iscntrl(c) 
isdigit(c) 
isgraph(c) 
islower(c) 
isprint(c) 
ispunct(c) 
isspace(c) 
isupper(c) 
isxdigit(c) 

isalpha (c) or isdigi t (c) is true 
isupper (c) or is lower (c) is true 
control character 
decimal digit 
printing character except space 
lower-case letter 
printing character including space 
printing character except space or letter or digit 
space, formfeed, newline, carriage return, tab, vertical tab 
upper-case letter 
hexadecimal digit 

In the seven-bit ASCII character set, the printing characters are Ox20 (' ') to Ox7E 
('-');the control characters are 0 (NUL) to Ox1F (US), and Ox7F (DEL). 

In addition, there are two functions that convert the case of letters: 
int tolower(int c) 
int toupper(int c) 

convert c to lower case 
convert c to upper case 

If c is an upper-case letter, to lower (c) returns the corresponding lower-case letter; 
otherwise it returns c. If c is a lower-case letter, toupper (c) returns the correspond-
ing upper-case letter; otherwise it returns c. 

83. String Functions: < string.h > 
There are two groups of string functions defined in the header <string. h>. The 

first have names beginning with str; the second have names beginning with mem. 
Except for memmove, the behavior is undefined if copying takes place between overlap-
ping objects. Comparison functions treat arguments as unsigned char arrays. 

In the following table, variables s and t are of type char *; cs and ct are of type 
const char *; n is of type size_ t; and c is an int converted to char. 

char *Strcpy(s,ct) 
char *Strncpy(s,ct,n) 

char *Strcat(s,ct) 
char *Strncat(s,ct,n) 

int strcmp(cs,ct) 

int strncmp(cs,ct,n) 

char *Strchr(cs,c) 

char *Strrchr(cs,c) 

copy string ct to string s, including '\0 ';return s. 
copy at most n characters of string ct to s; return s. 
Pad with '\0 's if t has fewer than n characters. 
concatenate string ct to end of string s; return s. 
concatenate at most n characters of string ct to string 
s, terminate s with '\0 ';return s. 
compare string cs to string ct; return <0 if cs<ct, 0 
if cs==ct, or >0 if cs>ct. 
compare at most n characters of string cs to string ct; 
return <0 if cs<ct, 0 if cs==ct, or >0 if cs>ct. 
return pointer to first occurrence of c in cs or NULL if 
not present. 
return pointer to last occurrence of c _in cs or NULL if 
not present. 



250 STANDARD LIBRARY 

size_t strspn(cs,ct) 

size_t strcspn(cs,ct) 

char *Strpbrk(cs,ct) 

char *Strstr(cs,ct) 

size_t strlen(cs) 
char *Strerror(n) 

char *Strtok(s,ct) 

APPENDIX B 

return length of prefix of cs consisting of characters in 
ct. 
return length of prefix of cs consisting of characters 
not in ct. 
return pointer to first occurrence in string cs of any 
character of string ct, or NULL if none are present. 
return pointer to first occurrence of string ct in cs, or 
NULL if not present. 
return length of cs. 
return pointer to implementation-defined string 
corresponding to error n. 
strtok searches s for tokens delimited by characters 
from ct; see below. 

A sequence of calls of strtok ( s, ct) splits s into tokens, each delimited by a 
character from ct. The first call in a sequence has a non-NULL s. It finds the first 
token in s consisting of characters not in ct; it terminates that by overwriting the next 
character of s with • \0 • and returns a pointer to the token. Each subsequent call, indi-
cated by a NULL value of s, returns the next such token, searching from just past the 
end of the previous one. strtok returns NULL when no further token is found. The 
string ct may be different on each call. 

The mem. .. functions _are meant for manipulating objects as character arrays; the 
intent is an interface to efficient routines. In the following table, s and t are of type 
void *; cs and ct are of type const void *; n is of type size_ t; and c is an int 
converted to an unsigned char. 

void *memcpy ( s , ct, n) copy n characters from ct to s, and return s. 
void *memmove ( s, ct, n) same as memcpy except that it works even if the 

objects overlap. 
int memcmp ( cs, ct, n) compare the first n characters of cs with ct; return as 

with strcmp. 
void *memchr ( cs, c, n) return pointer to first occurrence of character c in cs, 

or NULL if not present among the first n characters. 
void *memset ( s , c , n) place character c into first n characters of s, return s. 

84. Mathematical Functions: <math.h> 
The header <math.h> declares mathematical functions and macros. 
The macros EDOM and ERANGE (found in <errno. h>) are non-zero integral con-

stants that are used to signal domain and range errors for the functions; HUGE_ VAL is a 
positive double value. A domain error occurs if an argument is outside the domain 
over which the function is defined. On a domain error, errno is set to EDOM; the return 
value is implementation-dependent. A range error occurs if the result of the function 
cannot be represented as a double. If the result overflows, the function returns 
HUGE_ VAL with the right sign, and errno is set to ERANGE. If the result underflows, 
the function returns zero; whether errno is set to ERANGE is implementation-defined. 

In the following table, x and y are of type double, n is an int, and all functions 
return double. Angles for trigonometric functions are expressed in radians. 



SECTION 85 

sin(x) 
cos(x) 
tan(x) 
asin(x) 
acos(x) 
atan(x) 

sine of x 
cosine of x 
tangent of x 

UTILITY FUNCTIONS: <STDLIB.H> 251 

sin-1 (x) in range [-1r/2, 11"/2], x E [-1, 11. 
cos-1 (x) in range [0, 1r], x E [-1, 1]. 
tan-1 (x) in range [-11"/2, 1r/2l 

atan2 ( y, x) tan-1 (y!x) in range [ -1r, 11"]. 
sinh ( x) hyperbolic sine of x 
cosh(x) 
tanh(x) 
exp(x) 
log(x) 
log10(x) 
pow(x,y) 

hyperbolic cosine of x 
hyperbolic tangent of x 
exponential function ex 
natural logarithm ln(x), x>O. 
base 10 logarithm log10 (x), x>O. 
xY. A domain error occurs if x-0 and or if 
x < 0 and y is not an integer. 

sqrt(x) £, 
ceil (x) smallest integer not less than x, as a double. 
floor(x) largest integer not greater than x, as a double. 
fabs(x) absolutevalue lxl 
ldexp(x,n) x·2" 
frexp(x, int *exp) 

splits x into a normalized fraction in the interval 
[112, 1), which is returned, and a power of 2, which is 
stored in *exp. If x is zero, both parts of the result 
are zero. 

modf(x, double *iP) 
splits x into integral and fractional parts, each with the 
same sign as x. It stores the integral part in *ip, and 
returns the fractional part. 

fmod ( x, y) floating-point remainder of x/y, with the same sign as 
x. If y is zero, the result is implementation-defined. 

85. Utility Functions: < stdlib.h > 
The header <stdlib. h> declares functions for number conversion, storage alloca-

tion, and similar tasks. 

double atof(con8t char *8) 
atof converts 8 to double; it is equivalent to strtod(s, (char**)NULL). 

int atoi(con8t char *S) 
converts s to int; it is equivalent to ( int) strtol ( s, (char**) NULL, 1 0 ) . 

long atol(con8t char *8) 
converts 8 to long; it is equivalent to strtol ( s, (char** )NULL, 10 ). 

double 8trtod(const char *S, char **endp) 
strtod converts the prefix of s to double, ignoring leading white space; it stores a 

to any unconverted suffix in *endp unless endp is NULL. If the answer 



151 STANDARD LIBRARY APPENDlX B 

would overflow, HUGE_ VAL is returned with the proper sign; if the answer would 
underflow, zero is returned. In either case errno is set to ERANGE. 

long strtol(const char *S, char **endp, int base) 
strtol converts the prefix of s to long, ignoring leading white space; it stores a 
pointer to any unconverted suffix in *endp unless endp is NULL. If base is 
between 2 and 36, conversion is done assuming that the input is written in that base. 
If base is zero, the base is 8, 10, or 16; leading 0 implies octal and leading Ox or OX 
hexadecimal. Letters in either case represent digits from 10 to base-1; a leading 
Ox or OX is permitted in base 16. If the answer would overflow, LONG _MAX or 
LONG_MIN is returned, depending on the sign of the result, and errno is set to 
ERANGE. 

unsigned long strtoul(const char *S, char **endp, int base) 
strtoul is the same as strtol except that the result is unsigned long and the 
error value is ULONG _MAX. 

int rand(void) 
rand returns a pseudo-random integer in the range 0 to RAND _MAX, which is at 
least 32767. 

void srand(unsigned int seed) 
srand uses seed as the seed for a new sequence of pseudo-random numbers. The 
initial seed is 1. 

void *Calloc(size_t nobj, size_t size) 
calloc returns a pointer to space for an array of nobj objects, each of size size, 
or NULL if the request cannot be satisfied. The space is initialized to zero bytes. 

void *malloc(size_t size) 
malloc returns a pointer to space for an object of size size, or NULL if the request 
cannot be satisfied. The space is uninitialized. 

void *realloc(void *P, size_t size) 
realloc changes the size of the object pointed to by p to size. The contents will 
be unchanged up to the minimum of the old and new sizes. If the new size is larger, 
the new space is uninitialized. realloc returns a pointer to the new space, or 
NULL if the request cannot be satisfied, in which case *P is unchanged. 

void free(void *P) 
free deallocates the space pointed to by p; it does nothing if p is NULL. p must be 
a pointer to space previously allocated by calloc, malloc, or realloc. 

void abort(void) 
abort causes the program to terminate abnormally, as if by raise ( SIGABRT). 

void exit(int status) 
exit causes normal program termination. atexi t functions are called in reverse 
order of registration, open files are flushed, open streams are closed, and control is 
returned to the environment. How status is returned to the environment is 
implementation-dependent, but zero is taken as successful termination. The values 
EXIT_SUCCESS and EXIT_FAILURE may also be used. 



SECTION 86 DIAGNOSTICS: <ASSERT.H> 153 

int atexit(void (*fcn)(void)) 
atexit registers the function fen to be called when the program terminates nor-
mally; it returns non-zero if the registration cannot be made. 

int system(const char *S) 
system passes the string s to the environment for execution. If s is NULL, system 
returns non-zero if there is a command processor. If s is not NULL, the return value 
is implementation-dependent. 

char *getenv(const char *name) 
getenv returns the environment string associated with name, or NULL if no string 
exists. Details are implementation-dependent. 

void *bsearch(const void *key, const void *base, 
size_t n, size_t size, 
int (*cmp)(const void *keyval, const void *datum)) 

bsearch searches base [ 0] ... base [ n-1 ] for an item that matches *key. The 
function cmp must return negative if its first argument (the search key) is less than 
its second (a table entry), zero if equal, and positive if greater. Items in the array 
base must be in ascending order. bsearch returns a pointer to a matching item, 
or NULL if none exists. 

void qsort(void *base, size_t n, size_t size, 
int (*cmp)(const void*' const void*)) 

qsort sorts into ascending order an array base[ 0 ] ... base[n-1] of objects of size 
size. The comparison function cmp is as in bsearch. 

int abs(int n) 
abs returns the absolute value of its int argument. 

long labs(long n) 
labs returns the absolute value of its long argument. 

div_t div(int num, int denom) 
div computes the quotient and remainder of num/denom. The results are stored in 
the int members quot and rem of a structure of type di v _ t. 

ldiv_t ldiv(long num, long denom) 
div computes the quotient and remainder of num/denom. The results are stored in 
the long members quot and rem of a structure of type ldi v _ t. 

86. Diagnostics: <assert.h> 
The assert macro is used to add diagnostics to programs: 

void assert ( int expression) 
If expression is zero when 

assert (expression ) 
is executed, the assert macro will print on stderr a message, such as 

Assertion failed: expression, file filename, line nnn 
It then calls abort to terminate execution. The source filename and line number come 



254 STANDARD LIBRARY APPENDIX B 

from the preprocessor macros __ FILE __ and __ LINE __ . 
If NDEBUG is defined at the time <assert. h> is included, the assert macro is 

ignored. 

87. Variable Argument Usts: < stdarg.h> 
The header <stdarg. h> provides facilities for stepping through a list of function 

arguments of unknown number and type. 
Suppose lastarg is the last named parameter of a function f with a variable number 

of arguments. Then declare within f a variable ap of type va_list that will point to 
each argument in turn: 

va_list ap; 
ap must be initialized once with the macro va_start before any unnamed argument is 
accessed: 

va_start(va_list ap, lastarg); 
Thereafter, each execution of the macro va_arg will produce a value that has the type 
and value of the next unnamed argument, and will also modify ap so the next use of 
va_arg returns the next argument: 

type va_arg(va_list ap, type); 
The macro 

void va_end(va_list ap); 
must be called once after the arguments have been processed but before f is exited. 

88. Non-local Jumps: < setjmp.h> 
The declarations in <set jmp. h> provide a way to avoid the normal function call 

and return sequence, typically to permit an immediate return from a deeply nested func- · 
tion call. 

int setjmp(jmp_buf env) 
The macro setjmp saves state information in env for use by longjmp. The return 
is zero from a direct call of setjmp, and non-zero from a subsequent call of 
longjmp. A call to setjmp can only occur in certain contexts, basically the test of 
if, switch, and loops, and only in simple relational expressions. 

if (setjmp(env) == 0) 
/* get here on direct call */ 

else 
/* get here by calling longjmp */ 

void longjmp(jmp_buf env, int val) 
longjmp restores the state saved by the most recent call to setjmp, using informa-
tion saved in env, and execution resumes as if the setjmp function had just exe-
cuted and returned the non-zero value val. The function containing the set jmp 
must not have terminated. Accessible objects have the values they had when 
longjmp was called, except that non-volatile automatic variables in the function 
calling setjmp become undefined if they were changed after the setjmp call. 



SECTION 810 DATE AND TIME FUNCTIONS: <TIME.H> 255 

89. Signals: < signal.h> 
The header <signal. h> provides facilities for handling exceptional conditions that 

arise during execution, such as an interrupt signal from an external source or an error in 
execution. 

void (*signal(int sig, void (*handler)(int)))(int) 
signal determines how subsequent signals will be handled. If handler is 

SIG_DFL, the implementation-defined default behavior is used; if it is SIG_IGN, the 
signal is ignored; otherwise, the function pointed to by handler will be called, with the 
argument of the type of signal. Valid signals include 

SIGABRT abnormal termination, e.g., from abort 
SIGFPE arithmetic error, e.g., zero divide or overflow 
SIGILL illegal function image, e.g., illegal instruction 
SIGINT interactive attention, e.g., interrupt 
SIGSEGV illegal storage access, e.g., access outside memory limits 
SIGTERM termination request sent to this program 

signal returns the previous value of handler for the specific signal, or SIG_ERR if 
an error occurs. 

When a signal sig subsequently occurs, the signal is restored to its default behavior; 
then the signal-handler function is called, as if by (*handler) ( sig). If the handler 
returns, execution will resume where it was when the signal occurred. 

The initial state of signals is implementation-defined. 

int raise(int sig) 
raise sends the signal sig to the program; it returns non-zero if unsuccessful. 

81 0. Date and Time Functions: < time.h> 
The header <time. h> declares types and functions for manipulating date and time. 

Some functions process local time, which may differ from calendar time, for example 
because of time zone. clock_ t and time_ t are arithmetic types representing times, 
and struct tm holds the components of a calendar time: 

int tm_sec; seconds after the minute (0, 61) 
int tm_min; minutes after the hour (0, 59) 
int tm_hour; hours since midnight (0, 23) 
int tm_mday; day of the month ( I, 31) 
int tm_mon; months since January (0, II) 
int tm_year; years since 1900 
int tm_wday; days since Sunday (0, 6) 
int tm_yday; days since January I (0, 365) 
int tm_isdst; Daylight Saving Time flag 

tm_isdst is positive if Daylight Saving Time is in effect, zero if not, and negative if 
the information is not available. 

clock_t clock(void) 
clock returns the processor time used by the program since the beginning of execu-
tion, or -1 if unavailable. clock ( ) /CLOCKS_PER_SEC is a time in seconds. 



256 STANDARD LIBRARY APPENDIX B 

time_t time(time_t *tp) 
time returns the current calendar time or -1 if the time is not available. If tp is 
not NULL, the return value is also assigned to *tp. 

double difftime(time_t time2, time_t time1) 
difftime returns time2-time 1 expressed in seconds. 

time_t mktime(struct tm *tp) 
mktime converts the local time in the structure *tP into calendar time in the same 
representation used by time. The components will have values in the ranges shown. 
mktime returns the calendar time or -1 if it cannot be represented. 

The next four functions return pointers to static objects that may be overwritten by 
other calls. 

char *asctime(const struct tm *tP) 
asctime converts the time in the structure *tp into a string of the form 

Sun Jan 3 15:14:13 1988'n'O 

char *Ctime(const time_t *tp) 
ctime converts the calendar time *tP to local time; it is equivalent to 

asctime(localtime(tp)) 

struct tm *gmtime(const time_t *tp) 
gmtime converts the calendar time *tP into Coordinated Universal Time (UTC). It 
returns NULL if UTC is not available. The name gmtime has historical significance. 

struct tm *localtime(const time_t *tp) 
local time converts the calendar time *tP into local time. 

size_t strftime(char *S, size_t smax, const char *fmt, 
const struct tm *tp) 

strftime formats date and time information from *tP into s according to fmt, 
which is analogous to a print£ format. Ordinary characters (including the ter-
minating ''0 ') are copied into s. Each %c is replaced as described below, using 
values appropriate for the local environment. No more than smax characters are 
placed into s. strftime returns the number of characters, excluding the ''0 ', or 
zero if more than smax characters were produced. 

%a abbreviated weekday name. 
%A full weekday name. 
"b abbreviated month name. "B full month name. 
"c local date and time representation. 
%d day of the month (01-31). 
"H hour (24-hour clock) (00-23). 
"I hour (12-hour clock) (01-12). 
"j day of the year (001-366). 



SECTION 811 IMPLEMENTATION-DEFINED LIMITS: <LIMITS.H> AND <FLOAT.H> 257 

%m month (01-12). 
%M. minute (00-59). 
"P local equivalent of AM or PM. "s second (00-61). 
"U week number of the year (Sunday as 1st day of week) (00-53). "w weekday (0-6, Sunday is 0). 
»l week number of the year (Monday as 1st day of week) (00-53). 
%x local date representation. 
n local time representation. 
"Y year without century (00-99). 
"Y year with century. "z time zone name, if any. 

"" "-

B 11. Implementation-defined Limits: < limits.h > and < float.h > 
The header <1 imi ts . h> defines constants for the sizes of integral types. The 

values below are acceptable minimum magnitudes; larger values may be used. 
CHAR_BIT 8 bits in a char 
CHAR_MAX UCHAR_MAX or 

CHAR_MIN 
INT_MAX 
INT_MIN 
LONG_MAX 
LONG_MIN 
SCHAR_MAX 
SCHAR_MIN 
SHRT_MAX 
SHRT_MIN 
UCHAR_MAX 
UINT_MAX 
ULONG_MAX 
USHRT_MAX 

SCHAR_MAX maximum value of char 
0 or SCHAR_MIN 

+32767 
-32767 

+2147483647 
-2147483647 

+127 
-127 

+32767 
-32767 

255 
65535 

4294967295 
65535 

minimum value of char 
maximum value of int 
minimum value of int 
maximum value of long 
minimum vl'tlue of long 
maximum value of signed char 
minimum value of signed char 
maximum value of short 
minimum value of short 
maximum value of unsigned char 
maximum value of unsigned int 
maximum value of unsigned long 
maximum value of unsigned short 

The names in the table below, a subset of <float. h>, are constants related to 
floating-point arithmetic. When a value is given, it represents the minimum magnitude 
for the corresponding quantity. Each implementation defines appropriate values. 

FLT_RADIX 
FLT_ROUNDS 
FLT_DIG 
FLT_EPSILON 
FLT_MANT_DIG 
FLT_MAX 
FLT_MAX_EXP 
FLT_MIN 
FLT_MIN_EXP 

2 radix of exponent representation, e.g., 2, 16 
floating-point rounding mode for addition 

6 decimal digits of precision 
1E-5 smallest number x such that 1.0 + x ¢ 1.0 

number of base FLT _RADIX digits in mantissa 
1E+37 maximum floating-point number 

maximum n such that FLT _RADIXn-1 is representable 
1E-37 minimum normalized floating-point number 

minimum n such that 10n is a normalized number 



258 STANDARD LIBRARY APPENDIX B 

DBL_DIG 
DBL_EPSILON 
DBL_MANT_DIG 
DBL_MAX 
DBL_MAX_EXP 
DBL_MIN 
DBL_MIN_EXP 

1 0 decimal digits of precision 
1E-9 smallest number x such that 1.0 + x 1.0 

number of base FLT_RADIX digits in mantissa 
1E+37 maximum double floating-point number 

maximum n such that FLT _RADI:x"-1 is representable 
1E-37 minimum normalized double floating-point number 

minimum n such that 10" is a normalized number 



APPENDIX c: Summary of Changes 

Since the publication of the first edition of this book, the definition of the C 
language has undergone changes. Almost all were extensions of the original language, 
and were carefully designed to remain compatible with existing practice; some repaired 
ambiguities in the original description; and some represent modifications that change 
existing practice. Many of the new facilities were announced in the documents accom-
panying compilers available from AT & T, and have subsequently been adopted by other 
suppliers of C compilers. More recently, the ANSI committee standardizing the language 
incorporated most of these changes, and also introduced other significant modifications. 
Their report was in part anticipated by some commercial compilers even before issuance 
of the formal C standard. 

This Appendix summarizes the differences between the language defined by the first 
edition of this book, and that expected to be defined by the final Standard. It treats 
only the language itself, not its environment and library; although these are an important 
part of the Standard, there is little to compare with, because the first edition did not 
attempt to prescribe an environment or library. 
• Preprocessing is more carefully defined in the Standard than in the first edition, and 

is extended: it is explicitly token based; there are new operators for catenation of 
tokens (##), and creation of strings (#); there are new control lines like #elif and 
#pragma; redeclaration of macros by the same token sequence is explicitly permit-
ted; parameters inside strings are no longer replaced. Splicing of lines by \ is per-
mitted everywhere, not just in strings and macro definitions. See §A12. 

• The minimum significance of all internal identifiers is increased to 31 characters; the 
smallest mandated significance of identifiers with external linkage remains 6 mono-
case letters. (Many implementations provide more.) 

• Trigraph sequences introduced by ? ? allow representation of characters lacking in 
some character sets. Escapes for #\" [ ] { } : - are defined; see §A 12.1. Observe that 
the introduction of trigraphs may change the meaning of strings containing the 
sequence ? ? . 

• New keywords (void, const, volatile, signed, enum> are introduced. The 
stillborn entry keyword is withdrawn. 

• New escape sequences, for use within character constants and string literals, are 
defined. The effect of following \ by a character not part of an approved escape 
sequence is undefined. See §A2.5.2. 

259 



l60 SUMMARY OF CHANGES APPENDIX C 

• Everyone's favorite trivial change: 8 and 9 are not octal digits. 
• The Standard introduces a larger set of suffixes to make the type of constants expli-

cit: u or L for integers, F or L for floating. It also refines the rules for the type of 
unsuffixed constants (§A2.5). 

• Adjacent string literals are concatenated. 
• There is a notation for wide-character string literals and character constants; see 

§A2.6. 
• Characters; as well as other types, may be explicitly declared to carry, or not to 

carry, a sign by using the keywords signed or unsigned. The locution long 
float as a synonym for double is withdrawn, but long double may be used to 
declare an extra-precision floating quantity. 

• For some time, type unsigned char has been available. The standard introduces 
the signed keyword to make signedness explicit for char and other integral 
objects. 

• The void type has been available in most implementations for some years. The 
Standard introduces the use of the void * type as a generic pointer type; previously 
char * played this role. At the same time, explicit rules are enacted against mixing 
pointers and integers, and pointers of different type, without the use of casts. 

• The Standard places explicit minima on the ranges of the arithmetic types, and man-
dates headers (<limits.h> and <float.h>) giving the characteristics of each 
particular implementation. 

• Enumerations are new since the first edition of this book. 
• The Standard adopts from C++ the notion of type qualifier, for example const 

(§A8.2). 
• Strings are no longer modifiable, and so may be placed in read-only memory. 
• The "usual arithmetic conversions" are changed, essentially from "for integers, 

unsigned always wins; for floating point, always use double" to "promote to the 
smallest capacious-enough type." See §A6.5. 

• The old assignment operators like = + are truly gone. Also, assignment operators are 
now single tokens; in the first edition, they were pairs, and could be separated by 
white space. 

• A compiler's license to treat mathematically associative operators as computationally 
associative is revoked. 

• A unary +operator is introduced for symmetry with unary -. 
• A pointer to a function may be used as a function designator without an explicit * 

operator. See §A7.3.2. 
• Structures may be assigned, passed to functions, and returned by functions. 
• Applying the address-of operator to arrays is permitted, and the result is a pointer to 

the array. 
• The sizeof operator, in the first edition, yielded type int; subsequently, many 

implementations made it unsigned. The Standard makes its type explicitly 
implementation-dependent, but requires the type, size_ t, to be defined in a 



SUMMARY OF CHANGES APPENDIX C 261 

standard header (<stddef .h>). A similar change occurs in the type 
(ptrdiff_t) of the difference between pointers. See §A7.4.8 and §A7.7. 

• The address-of operator &. may not be applied to an object declared register, even 
if the implementation chooses not to keep the object in a register. 

• The type of a shift expression is that of the left operand; the right operand can't pro-
mote the result. See §A 7 .8. 

• The Standard legalizes the creation of a pointer just beyond the end of an array, and 
allows arithmetic and relations on it; see §A 7. 7. 

• The Standard introduces (borrowing from C++) the notion of a function prototype 
declaration that incorporates the types of the parameters, and includes an explicit 
recognition of variadic functions together with an approved way of dealing with 
them. See §§A7.3.2, A8.6.3, B7. The older style is still accepted, with restrictions. 

• Empty declarations, which have no declarators and don't declare at least a structure, 
union, or enumeration, are forbidden by the Standard. On the other hand, a declara-
tion with just a structure or union tag redeclares that tag even if it was declared in 
an outer scope. 

• External data declarations without any specifiers or qualifiers (just a naked declara-
tor) are forbidden. 

• Some implementations, when presented with an extern declaration in an inner 
block, would export the declaration to the rest of the file. The Standard makes it 
clear that the scope of such a declaration is just the block. 

• The scope of parameters is injected into a function's compound statement, so that 
variable declarations at the top level of the function cannot hide the parameters. 

• The name spaces of identifiers are somewhat different. The Standard puts all tags in 
a single name space, and also introduces a separate name space for labels; see 
§All.l. Also, member names are associated with the structure or union of which 
they are a part. (This has been common practice from some time.) 

• Unions may be initialized; the initializer refers to the first member. 
• Automatic structures, unions, and arrays may be initialized, albeit in a restricted 

way. 
• Character arrays with an explicit size may be initialized by a string literal with 

exactly that many characters (the \0 is quietly squeezed out). 
• The controlling expression, and the case labels, of a switch may have any integral 

type. 





0 ... octal constant 37, 193 
Ox ... hexadecimal constant 37, 193 
+ addition operator 41, 205 
& address operator 93, 203 
= assignment operator 17, 42, 208 
+= assignment operator 50 
\\ backslash character 8, 38 
& bitwise AND operator 48, 207 
A bitwise exclusive OR operator 48, 207 
: bitwise inclusive OR operator 48, 207 
, comma operator 62, 209 
? : conditional expression 51, 208 
•.. declaration 155, 202 
--decrement operator 18, 46, 106, 203 
I division operator 10, 41, 205 
==equality operator 19, 41, 207 
>=greater or equal operator 41, 206 
> greater than operator 41, 206 
++ increment operator 18, 46, 106, 203 
* indirection operator 94, 203 
I= inequality operator 16, 41, 207 
« left shift operator 49, 206 
<=less or equal operator 41, 206 
<less than operator 41, 206 
&& logical AND operator 21, 41, 49, 207 
I logical negation operator 42, 203-204 
:: logical OR operator 21, 41, 49, 208 
% modulus operator 41, 205 
*multiplication operator 41, 205 
- one's complement operator 49, 203-204 
# preprocessor operator 90, 230 
## preprocessor operator 90, 230 
' quote character 19, 37-38, 193 
n quote character 8, 20, 38, 194 
» right shift operator 49, 206 
• structure member operator 128, 201 
->structure pointer operator 131, 201 
-subtraction operator 41, 205 
-unary minus operator 203-204 
+ unary plus operator 203-204 
_ underscore character 35, 192, 241 
\0 null character 30, 38, 193 

\a alert character 38, 193 
abort library function 252 

263 

abs library function 253 
abstract declarator 220 
access mode, file 160, 178, 242 
acos library function 251 
actual argument see argument 
addition operator,+ 41, 205 
additive operators 205 
addpoint function 130 

Index 

address arithmetic see pointer arithmetic 
address of register 21 0 
address of variable 28, 94, 203 
address operator, & 93, 203 
add tree function I 41 
afree function 102 
alert character, \a 38, 193 
alignment, bit-field 150, 213 
alignment by union 186 
alignment restriction 138, 142, 148, 167, 185, 

199 
alloc function 101 
allocator, storage 142, 185-189 
ambiguity, if-else 56, 223, 234 
American National Standards Institute (ANSI) 

ix, 2, 191 
a.out 6, 70 
argc argument count 114 
argument, definition of 25, 201 
argument, function 25, 202 
argument list, variable length 155, 174, 202, 

218, 225, 254 
argument list, void 33, 73, 218, 225 
argument, pointer I 00 
argument promotion 45, 202 
argument, subarray 100 
arguments, command-line 114-118 
argv argument vector 114, 163 
arithmetic conversions, usual 42, 198 
arithmetic operators 41 
arithmetic, pointer 94, 98, 100-103, 117, 138, 

205 
arithmetic types 196 
array, character 20, 28, 104 
array declaration 22, Ill, 216 
array declarator 216 
array initialization 86, 113, 219 
array, initialization of two-dimensional 112, 

220 



264 THE C PROGRAMMING LANGUAGE 

array, multi-dimensional I 10, 217 
array name argument 28, I 00, 112 
array name, conversion of 99, 200 
array of pointers 107 
array reference 201 
array size, default 86, 113, 133 
array, storage order of 112, 217 
array subscripting 22, 97, 201, 217 
array, two-dimensional II 0, 112, 220 
array vs. pointer 97, 99-100, I 04, 113 
arrays of structures 132 
ASCII character set 19, 37, 43, 229, 249 
asctime library function 256 
asin library function 251 
asm keyword 192 
<assert. h> header 253 
assignment, conversion by 44, 208 
assignment expression 17, 21, 51, 208 
assignment, multiple 21 
assignment operator, = 17, 42, 208 
assignment operator, += 50 
assignment operators 42, 50, 208 
assignment statement, nested I 7, 21, 51 
assignment suppression, scanf 157, 245 
associativity of operators 52, 200 
atan, atan2 library functions 251 
atexi t library function 253 
atof function 71 
atof library function 251 
atoi function 43, 61, 73 
a toi library function 251 
atol library function 251 
auto storage class specifier 210 
automatic storage class 31, 195 
automatic variable 31, 74, 195 
automatics, initialization of 31, 40, 85, 219 
automatics, scope of 80, 228 
avoiding goto 66 

\b backspace character 8, 38, 193 
backslash character, \\ 8, 38 
bell character see alert character 
binary stream 160, 241-242 
binary tree 139 
binsearch function 58, 134, 137 
bit manipulation idioms 49, 149 
bi tcount function 50 
bit-field alignment 150, 213 
bit-field declaration 150, 212 
bitwise AND operator,&. 48, 207 
bitwise exclusive OR operator, " 48, 207 
bitwise inclusive OR operator, I 48, 207 
bitwise operators 48, 207 
block see compound statement 
block, initialization in 84, 223 
block structure 55, 84, 223 
boundary condition 19, 65 
braces 7, 10, 55, 84 
braces, position of 10 
break statement 59, 64, 224 
bsearch library function 253 
buffered getchar 172 
buffered input 170 

buffering see setbuf, setvbuf 
BUFSIZ 243 

calculator program 72, 74, 76, 158 
call by reference 27 
call by value 27, 95, 202 
calloc library function 167, 252 
canonrect function 131 
carriage return character, \r 38, 193 
case label 58, 222 
cast, conversion by 45, 198-199, 205 

INDEX 

cast operator 45, 142, 167, 198, 205, 220 
cat program 160, 162-163 
cc command 6, 70 
ceil library function 251 
char type I 0, 36, 195, 211 
character array 20, 28, 104 
character constant 19, 37, 193 
character constant, octal 37 
character constant, wide 193 
character count program 18 
character input/output 15, 151 
character set 229 
character set, ASCII 19, 37, 43, 229, 249 
character set, EBCDIC 43 
character set, ISO 229 
character, signed 44, 195 
character string see string constant 
character testing functions 166, 248 
character, unsigned 44, 195 
character-integer conversion 23, 42, 197 
characters, white space 157, 166, 245, 249 
clearerr library function 248 
CLOCKS PER SEC 255 
clock library-function 255 
clock_ t type name 255 
close system call 174 
closedir function 184 
coercion see cast 
comma operator, , 62, 209 
command-line arguments 114-118 
comment 9, 191-192, 229 
comparison, pointer I 02, 138, 187, 207 
compilation, separate 67, 80, 227 
compiling a C program 6, 25 
compiling multiple files 70 
compound statement 55, 84, 222, 225-226 
concatenation, string 38, 90, 194 
concatenation, token 90, 230 
conditional cumpilation 91, 231 
conditional expression, ? : 51, 208 
const qualifier 40, 196,l211 
constant expression 38, 58, 91, 209 
constant, manifest 230 
constant suffix 37, 193 
constant, type of 37, 193 
constants 37, 192 
continue statement 65, 224 
control character 249 
control line 88, 229-233 
conversion 197-199 
conversion by assignment 44, 208 
conversion by cast 45, 198-199, 205 



THE C PROGRAMMING LANGUAGE 

conversion by return 73, 225 
conversion, character-integer 23, 42, 197 
conversion, double-float 45, 198 
conversion, float-double 44, 198 
conversion, floating-integer 45, 197 
conversion, integer-character 45 
conversion, integer-floating 12, 197 
conversion, integer-pointer 199, 205 
conversion of array name 99, 200 
conversion of function 200 
conversion operator, explicit see cast 
conversion, pointer 142, 198, 205 
conversion, pointer-integer 198-199, 205 
conversions, usual arithmetic 42, 198 
copy function 29, 33 
cos library function 251 
cosh library function 251 
creat system call 172 
CRLF 151, 241 
ctime library function 256 
<ctype. h> header 43, 248 

date conversion Ill 
day_ of _year function Ill 
del function 123 
del program 125 
declaration 9, 40, 210--218 
declaration, array 22, 111, 216 
declaration, bit-field 150, 212 
declaration, external 225-226 
declaration of external variable 31, 225 
declaration of function 217-218 
declaration of function, implicit 27, 72, 201 
declaration of pointer 94, 100, 216 
declaration, storage class 210 
declaration, structure 128, 212 
declaration, type 216 
declaration, typedef 146, 210, 221 
declaration, union 147, 212 
declaration vs. definition 33, 80, 210 
declarator 215-218 
declarator, abstract 220 
declarator, array 216 
declarator, function 217 
decrement operator,-- 18, 46, 106, 203 
default array size 86, 113, 133 
default function type 30, 201 
default initialization 86, 219 
default label 58, 222 
defensive programming 57, 59 
#define 14,89, 229 
#define, multi-line 89 
#define vs. enum 39, 149 
#define with arguments 89 
defined preprocessor operator 91, 232 
definition, function 25, 69, 225 
definition, macro 229 
definition of argument 25, 201 
definition of external variable 33, 227 
definition of parameter 25, 201 
definition of storage 21 0 
definition, removal of see #undef 
definition, tentative 227 

dereference see indirection 
derived types 1, 10, 196 
descriptor, file 170 

INDEX 

designator, function 201 
difftime library function 256 
DIR structure 180 
dirdcl function 124 
directory list program 179 
Dirent structure 180 
dir. h include file 183 
dirwalk function 182 
div library function 253 
division, integer 10, 41 
division operator, I 10, 41, 205 
div_t, ldiv_t type names 253 
do statement 63, 224 
do-nothing function 70 
double constant 37, 194 
double type 10, 18, 36, 196, 211 
double-float conversion 45, 198 

E notation 37, 194 
EBCDIC character set 43 
echo program 115-116 
EDOM 250 
efficiency 51, 83, 88, 142, 187 
else see if-else statement 
#else, #elif 91,232 
else-if 23, 57 
empty function 70 
empty statement see null statement 
empty string 38 
end of file see EOF 
#endif 91 
enum specifier 39, 215 
enum vs. #define 39, 149 

265 

enumeration constant 39, 91, 193-194, 215 
enumeration tag 215 
enumeration type 196 
enumerator 194, 215 
EOF 16, 151, 242 
equality operator,== 19, 41, 207 
equality operators . 41, 207 
equivalence, type 221 
ERANGE 250 
errno 248, 250 
<errno. h> header 248 
#error 233 
error function 174 
errors, input/output 164, 248 
escape sequence 8, 19, 37-38, 193, 229 
escape sequence, \x hexadecimal 37, 193 
escape sequences, table of 38, 193 
evaluation, order of 21, 49, 53, 63, 77, 90, 95, 

200 
exceptions 200, 255 
exit library function 163, 252 
EXIT FAILURE, EXIT SUCCESS 252 
exp library function 251 
expansion, macro 230 
explicit conversion operator see cast 
exponentiation 24, 251 
expression 200--209 



266 THE C PROGRAMMING LANGUAGE 

expression, assignment 17, 21, 51, 208 
expression, constant 38, 58, 91, 209 
expression order of evaluation 52, 200 
expression, parenthesized 201 
expression, primary 200 
expression statement 55, 57, 222 
extern storage class specifier 31, 33, 80, 210 
external declaration 225-226 
external linkage 73, 192, 195, 211, 228 
external names, length of 35, 192 
external static variables 83 
external variable 31, 73, 195 
external variable, declaration of 31, 225 
external variable, definition of 33, 227 
externals, initialization of 40, 81, 85, 219 
externals, scope of 80, 228 

\f formfeed character 38, 193 
fabs library function 251 
fclose library function 162, 242 
f cntl • h include file 172 
feof library function 164, 248 
feof macro 176 
ferror library function 164, 248 
ferror macro 176 
fflush library function 242 
fgetc library function 246 
fgetpos library function 248 
fgets function 165 
fgets library function 164, 247 
field see bit-field 
file access 160, 169, 178, 242 
file access mode 160, 178, 242 
file appending 160, 175, 242 
file concatenation program 160 
file copy program 16-17, 171, 173 
file creation 161, 169 
file descriptor 170 
file inclusion 88, 231 
file opening 160, 169, I 72 
file permissions 17 3 
file pointer 160, 175, 242 
__ FILE __ preprocessor name 254 
FILE type name 160 
filecopy function 162 
filename suffix, . h 33 
FILENAME MAX 242 

f illbuf -function 178 
float constant 37, 194 
float type 9, 36, 196, 211 
float-double conversion 44, 198 
<float.h> header 36, 257 
floating constant 12, 37, 194 
floating point, truncation of 45, 197 
floating types 196 
floating-integer conversion 45, 197 
floor library function 251 
fmod library function 251 
fopen function 177 
fopen library function 160, 242 
FOPEN MAX 242 
for ( ; ; ) infinite loop 60, 89 
for statement 13, 18, 60, 224 

for vs. while 14, 60 
formal parameter see parameter 
formatted input see scanf 
formatted output see printf 
formfeed character, \f 38, 193 
fortran keyword l92 
fpos _ t type name 248 
fprintf library function 161, 243 
fputc library function 247 
fputs function 165 
fputs library function 164, 247 
fread library function 247 
free function 188 
free library function 167, 252 
freopen library function 162, 242 
frexp library function 251 
fscanf library function 161, 245 
fseek library function 248 
fsetpos library function 248 
fsize function 182 
fsize program 181 
fstat system call I 83 
ftelllibrary function 248 
function argument 25, 202 

INDEX 

function argument conversion see argument 
promotion 

function call semantics 201 
function call syntax 20 I 
function, conversion of 200 
function, declaration of 217-218 
function declaration, static 83 
function declarator 21 7 
function definition 25, 69, 225 
function designator 201 
function, implicit declaration of 27, 72, 201 
function names, length of 35, 192 
function, new-style 202 
function, old-style 26, 33, 72, 202 
function, pointer to 118, 147, 201 
function prototype 26, 30, 45, 72, 120, 202 
function type, default 30, 201 
functions, character testing 166, 248 
fundamental types 9, 36, 195 
fwri te library function 247 

generic pointer see void * pointer 
getbi ts function 49 
getc library function 161, 247 
getc macro 176 
getch function 79 
getchar, buffered 172 
getchar library function 15, 151, 161, 247 
getchar, unbuffered 171 
getenv library function 253 
getint function 97 
getline function 29, 32, 69, 165 
getop function 78 
gets library function 164, 247 
gettoken function 125 
getword function I 36 
gmtime library function 256 
goto statement 65, 224 
greater or equal operator, >= 41, 206 



THE C PROGRAMMING LANGUAGE 

greater than operator, > 41, 206 

• h filename suffix 33 
hash function 144 
hash table 144 
header file 33, 82 
headers, table of standard 241 
hexadecimal constant, Ox ... 37, 193 
hexadecimal escape sequence, \.x 37, 193 
Hoare, C. A. R. 87 
HUGE_ VAL 250 

identifier 192 
#if 91, 135, 231 
#ifdef 91, 232 
if-else ambiguity 56, 223, 234 
if-else statement 19, 21, 55, 223 
#ifndef 91, 232 
illegal pointer arithmetic 102-103, 138, 205 
implicit declaration of function 27, 72, 201 
#include 33, 88, 152, 231 
incomplete type 212 
inconsistent type declaration 72 
increment operator, ++ 18, 46, 106, 203 
indentation 1 0, 19, 23, 56 
indirection operator, * 94, 203 
inequality operator, I= 16, 41, 207 
infinite loop, for ( ; ; ) 60, 89 
information hiding 67-68, 75, 77 
initialization 40, 85, 218 
initialization, array 86, 113, 219 
initialization by string constant 86, 219 
initialization, default 86, 219 
initialization in block 84, 223 
initialization of automatics 31, 40, 85, 219 
initialization of externals 40, 81, 85, 219 
initialization of statics 40, 85, 219 
initialization of structure arrays 133 
initialization of two-dimensional array 112, 

220 
initialization, pointer 102, 138 
initialization, structure 128, 219 
initialization, union 219 
initializer 227 
initializer, form of 85, 209 
inode 179 
input, buffered 170 
input, formatted see scanf 
input, keyboard 15, 151, 170 
input pushback 78 
input, unbuffered 170 
input/output, character 15, 151 
input/output errors 164, 248 
input/outputredirection 152,161,170 
install function 145 
int type 9, 36, 211 
integer constant 12, 37, 193 
integer-character conversion 45 
integer-floating conversion 12, 197 
integer-pointer conversion 199, 205 
integral promotion 44, 197 
integral types 196 

INDEX 

internal linkage 195, 228 
internal names, length of 35, 192 
internal static variables 83 

IOFBF, IOLBF, IONBF 243 
isalnum library function 136, 249 
isalpha library function 136, 166, 249 
iscntrl library function 249 
isdigit library function 166, 249 
isgraph library function 249 
islower library function 166, 249 
ISO character set 229 
isprint library function 249 
ispunct library function 249 
isspace library function 136, 166, 249 
isupper library function 166, 249 
i sxdigi t library function 249 
iteration statements 224 
i toa function 64 

jump statements 224 

keyboard input 15, 151, 170 
keyword count program 133 
keywords, list of 192 

label 65, 222 
label, case 58, 222 
label, default 58, 222 
label, scope of 66, 222, 228 
labeled statement 65, 222 
labs library function 253 
%ld conversion 18 
ldexp library function 251 
ldi v library function 253 
leap year computation 41, Ill 
left shift operator, « 49, 206 
length of names 35, 192 
length of string 30, 38, I 04 
length of variable names 192 
less or equal operator, <= 41, 206 
less than operator, < 41, 206 
lexical conventions 191 
lexical scope 227 
lexicographic sorting 118 
library function 7, 67, 80 
<limits. h> header 36, 257 
#line 233 
line count program 19 
__ LINE __ preprocessor name 254 
line splicing 229 
linkage 195, 227-228 
linkage, external 73, 192, 195, 211, 228 
linkage, internal 195, 228 
list directory program 179 
list of keywords 192 
locale issues 241 
<locale. h> header 241 
local time library function 256 
log, log 10 library functions 251 
logical AND operator,&.&. 21, 41, 49, 207 
logical expression, numeric value of 44 

267 



268 THE C PROGRAMMING LANGUAGE 

logical negation operator, I 42, 203-204 
logical OR operator, : J 21, 41, 49, 208 
long constant 37, 193 
long double constant 37, 194 
long double type 36, 196 
long type 10, 18, 36, 196, 211 
longest-line program 29, 32 
longjmp library function 254 

LONG_MIN 252 
lookup function 145 
loop see while, for, do 
lower case conversion program 153 
lower function 43 
ls command 179 
lseek system call 174 
lvalue 197 

macro preprocessor 88, 228-233 
macros with arguments 89 
magic numbers 14 
main function 6 
main, return from 26, 164 
makepoint function 130 
malloc function 187 
malloc library function 143, 167, 252 
manifest constant 230 
<math.h> header 44, 250 
member name, structure 128, 213 
memchr library function 250 
memcmp library function 250 
memcpy library function 250 
memmove library function 250 
memset library function 250 
missing storage class specifier 211 
missing type specifier 211 
mktime library function 256 
modf library function 251 
modularization 24, 28, 34, 67, 74-75, 108 
modulus operator, " 41, 205 
month_day function Ill 
month name function 113 
morecore function 188 
multi-dimensional array 110, 217 
multiple assignment 21 
multiple files, compiling 70 
multiplication operator, * 41, 205 
multiplicative operators 205 
multi-way decision 23, 57 
mutually recursive structures 140, 213 

\n newline character 7, 15, 20, 37-38, 193, 
241 

name 192 
name hiding 84 
name space 227 
names, length of 35, 192 
negative subscripts 100 
nested assignment statement 17, 21, 51 
nested structure 129 
newline 191, 229 
newline character, \n 7, 15, 20, 37-38, 193, 

241 

new-style function 202 
NULL 102 
null character, \0 30, 38, 193 
null pointer l 02, 198 
null statement 18, 222 
null string 38 
numbers, size of 9, 18, 36, 257 
numcmp function 121 
numeric sorting 118 

INDEX 

numeric value of logical expression 44 
numeric value of relational expression 42, 44 

object 195, 197 
octal character constant 37 
octal constant, 0 ... 37, 193 
old-style function 26, 33, 72, 202 
one's complement operator, - 49, 203-204 
open system call 172 
opendir function 183 
operations on unions 148 
operations permitted on pointers l 03 
operators, additive 205 
operators, arithmetic 41 
operators, assignment 42, 50, 208 
operators, associativity of 52, 200 
operators, bitwise 48, 207 
operators, equality 41, 207 
operators, multiplicative 205 
operators, precedence of 17, 52, 95, 131-132, 

200 
operators, relational 16, 41, 206 
operators, shift 48, 206 
operators, table of 53 
order of evaluation 21, 49, 53, 63, 77, 90, 95, 

200 
order of translation 228 
O_RDONLY, O_RDWR, O_WRONLY 172 
output, formatted see printf 
output redirection 152 
output, screen 15, 152, 163, 170 
overflow 41, 200, 250, 255 

parameter 84, 99, 202 
parameter, definition of 25, 201 
parenthesized expression 201 
parse tree 123 
parser, recursive-descent 123 
pattern finding program 67, 69, 116-117 
permissions, file 173 
perror library function 248 
phases, translation 191, 228 
pipe 152, 170 
pointer argument 100 
pointer arithmetic 94, 98, 100-103, 117, 138, 

205 
pointer arithmetic, illegal 102-103, 138, 205 
pointer arithmetic, scaling in l 03, 198 
pointer comparison 102, 138, 187,207 
pointer conversion 142, 198, 205 
pointer, declaration of 94, 100, 216 
pointer, file 160, 175, 242 
pointer generation 200 



THE C PROGRAMMING LANGUAGE 

pointer initialization 102, 138 
pointer, null 102, 198 
pointer subtraction 103, 138, 198 
pointer to function 118, 147, 201 
pointer to structure 136 
pointer, void* 93, 103, 120, 199 
pointer vs. array 97, 99-100, 104, 113 
pointer-integer conversion 198-199, 205 
pointers and subscripts 97, 99, 217 
pointers, array of 107 
pointers, operations permitted on 103 
Polish notation 74 
pop function 77 
portability 3, 37, 43, 49, 147, 151, 153, 185 
position of braces 1 0 
postfix ++ and -- 46, 105 
pow library function 24, 251 
power function 25, 27 
lpragma 233 
precedence of operators 17, 52, 95, 131-132, 

200 
prefix ++ and -- 46, 106 
preprocessor, macro 88, 228-233 
preprocessor name, __ FILE __ 254 
preprocessor name, __ LINE__ 254 
preprocessor names, predefined 233 
preprocessor operator,# 90, 230 
preprocessor operator,## 90, 230 
preprocessor operator, defined 91, 232 
primary expression 200 
printd function 87 
print£ conversions, table of 154, 244 
print£ examples, table of 13, 154 
print£ library function 7, 11, 18, 153, 244 
printing character 249 
program arguments see command-line 

arguments 
program, calculator 72, 74, 76, 158 
program, cat 160, 162-163 
program, character count 18 
program, del 125 
program, echo 115-116 
program, file concatenation 160 
program, file copy 16-17, 171, 173 
program format 10, 19, 23, 40, 138, 191 
program, fsize 181 
program, keyword count 133 
program, line count 19 
program, list directory 179 
program, longest-line 29, 32 
program, lower case conversion 153 
program, pattern finding 67, 69, 116-117 
program readability 10, 51, 64, 86, 147 
program, sorting 108, 119 
program, table lookup 143 
program, temperature conversion 8-9, 12-13, 

15 
program, undcl 126 
program, white space count 22, 59 
program, word count 20, 139 
promotion, argument 45, 202 
promotion, integral 44, 197 
prototype, function 26, 30, 45, 72, 120, 202 
ptinrect function 130 

INDEX 

ptrdiff_ t type name 103, 147, 206 
push function 77 
pushback, input 78 
putc library function 161, 247 
putc macro 176 

269 

putchar library function 15, 152, 161, 247 
puts library function 164, 247 

qsort function 87, 110, 120 
qsort library function 253 
qualifier, type 208, 211 
quicksort 87, 110 
quote character, ' 19, 37-38, 193 
quote character. n 8, 20, 38, 194 

\r carriage return character 38, 193 
raise library function 255 
rand function 46 
rand library function 252 
RAND MAX 252 
read system call 170 
readdir function 184 
readlines function 109 
realloc library function 252 
recursion 86, 139, 141, 182, 202, 269 
recursive-descent parser 123 
redirection see input/output redirection 
register, address of 210 
register storage class specifier 83, 210 
relational expression, numeric value of 42, 44 
relational operators 16, 41, 206 
removal of definition see #undef 
remove library function 242 
rename library function 242 
reservation of storage 210 
reserved words 36, 192 
return from main 26, 164 
return statement 25, 30, 70, 73, 225 
return, type conversion by 73, 225 
reverse function 62 
reverse Polish notation 74 
rewind library function 248 
Richards, M. 1 
right shift operator, » 49, 206 
Ritchie, D. M. xi 

sbrk system call 187 
scaling in pointer arithmetic 103, 198 
scanf assignment suppression 157, 245 
scanf conversions, table of 158, 246 
scanf library function 96, 157, 246 
scientific notation 37, 73 
scope 195, 227-228 
scope, lexical 227 
scope of automatics 80, 228 
scope of externals 80, 228 
scope of label 66, 222, 228 
scope rules 80, 227 
screen output 15, 152, 163, 170 

SEEK_END, SEEK_SET 248 
selection statement 223 



270 THE C PROGRAMMING LANGUAGE 

self-referential structure I40, 213 
semicolon I 0, I5, I8, 55, 57 
separate compilation 67, 80, 227 
sequencing of statements 222 
setbuf library function 243 
setjmp library function 254 
<setjmp.h> header 254 
setvbuf library function 243 
Shell, D. L. 61 
shellsort function 62 
shift operators 48, 206 
short type 10, 36, 196, 21I 
side effects 53, 90, 200, 202 
SIG DFL, SIG SIG IGN 255 
sign extension 44-45, 177.-193 
signal library function 255 
<signal. h> header 255 
signed character 44, I95 
signed type 36, 211 
sin library function 251 
sinh library function 251 
size of numbers 9, I8, 36, 257 
size of structure 138, 204 
sizeof operator 91, 103, 135, 203-204, 247 
size_t type name 103, 135, 147, 204, 242 
sorting, lexicogr11phic 118 
sorting, numeric 118 
sorting program I 08, 119 
sorting text lines 107, 119 
specifier, auto storage class 210 
specifier, enum 39, 215 
specifier, extern storage class 31, 33, 80, 

210 
specifier, missing storage class 211 
specifier, register storage class 83, 210 
specifier, static storage class 83, 210 
specifier, storage class 210 
specifier, struct 212 
specifier, type 211 
specifier, union 2I2 
splicing, line 229 
sprint£ library function 155, 245 
sqrt library function 251 
squeeze function 47 
srand function 46 
srand library function 252 
sscanf library function 246 
standarderror 161,170 
standard headers, table of 241 
standard input 151, 161, 170 
standard output I52, 161, 170 
stat structure 180 
stat system call 180 
statement terminator 10, 55 
statements 222-225 
statements, sequencing of 242 
stat. h include file 180-181 
static function declaration 83 
static storage class 31, 83, 19S 
static storage class specifier 83, 210 
static variables, external 83 
static variables, internal 83 
statics, initialization of 40, 85, 2I9 
< stdarg. h> header 155, 17 4, 254 

<stddef .h> header 103, 135, 241 
stderr 16I, I63, 242 
stdin 161, 242 
<stdio. h> contents 176 
<stdio.h> header 6, 16, 89-90, 102, 

I51-152, 241 
<stdlib.h> header 71, 142, 251 
stdout 161, 242 
storage allocator 142, 185-189 
storage class 19 5 
storage class, automatic 31, 195 
storage class declaration 210 
storage class specifier 210 
storage class specifier, auto 210 

INDEX 

storage class specifier, extern 31, 33, 80, 
210 

storage class specifier, missing 211 
storage class specifier, register 83, 210 
storage class specifier, static 83, 210 
storage class, static 31, 83, 195 
storage, definition of 210 
storage order of array 112, 217 
storage, reservation of 210 
strcat function 48 
strcat library function 249 
strchr library function 249 
strcmp function 106 
strcmp library function 249 
strcpy function 105-106 
strcpy library function 249 
strcspn library function 250 
stream, binary I60, 241-242 
stream, text 15, 151, 24I 
strerror library function 250 
strftime library function 256 
strindex function 69 
string concatenation 38, 90, 194 
string constant 7, 20, 30, 38, 99, I 04, 194 
string constant, initialization by 86, 219 
string constant, wide 194 
string, length of 30, 38, 104 
string literal see string constant 
string, type of 200 
<string.h> header 39, 106,249 
strlen function 39, 99, 103 
strlen library function 250 
strncat library function 249 
strncmp library function 249 
strncpy library function 249 
strpbrk library function 250 
strrchr library function 249 
strspn library function 250 
strstr library function 250 
strtod library function 251 
strtok library function 250 
strtol, strtoul library functions 252 
struct specifier 212 
structure arrays, initialization of 133 
structure declaration 128, 212 
structure initialization 128, 219 
structure member name 128, 213 
structure member operator, 128, 201 
structure, nested 129 
structure pointer operator, -> 131, 201 



THE C PROGRAMMING LANGUAGE 

structure, pointer to 136 
structure reference semantics 202 
structure reference syntax 202 
structure, self-referential 140, 213 
structure, size of 138, 204 
structure tag 128, 212 
structures, arrays of 132 
structures, mutually recursive 140, 213 
subarray argument l 00 
subscripting, array 22, 97, 201, 217 
subscripts and pointers 97, 99, 217 
subscripts, negative 100 
subtraction operator, - 41, 205 
subtraction, pointer 103, 138, 198 
suffix, constant 193 
swap function 88, 96, 110, 121 
switch statement 58, 75, 223 
symbolic constants, length of 35 
syntax notation 194 
syntax of variable names 35, 192 
syscalls. h include file 171 
system calls 169 
system library function 167, 253 

'. t tab character 8, ll, 38, 193 
table lookup program 143 
table of escape sequences 38, 193 
table of operators 53 
table of printf conversions 154, 244 
table of printf examples 13, 154 
table of scanf conversions 158, 246 
table of standard headers 241 
tag, enumeration 215 
tag, structure 128, 212 
tag, union 212 
talloc function 142 
tan library function 251 
tanh library function 251 
temperature conversion program 8-9, 12-13, 

15 
tentative definition 227 
terminal input and output 15 
termination, program 162, 164 
text lines, sorting 107, 119 
text stream 15, 151, 241 
Thompson, K. L. l 
time library function 256 
<time. h> header 255 
time_t type name 255 
tmpfile library function 243 
TMP MAX 243 
tmpnam library function 243 
token 191, 229 
token concatenation 90, 230 
token replacement 229 
tolower library function 153, 166, 249 
toupper library function 166, 249 
translation, order of 228 
translation phases 191, 228 
translation unit 191, 225, 227 
tree, binary 139 
tree, parse 123 
treeprint function 142 

trigraph sequence 229 
trim function 65 

INDEX 271 

truncation by division l 0, 41, 205 
truncation of floating point 45, 197 
two-dimensional array ll 0, 112, 220 
two-dimensional array, initialization of 112, 

220 
type conversion by return 73, 225 
type conversion operator see cast 
type conversion rules 42, 44, 198 
type declaration 216 
type declaration, inconsistent 72 
type equivalence 221 
type, incomplete 212 
type names 220 
type of constant 37, 193 
type of string 200 
type qualifier 208, 211 
type specifier 211 
type specifier, missing 211 
typedef declaration 146, 210, 221 
types, arithmetic 196 
types, derived l, l 0, 196 
types, floating 196 
types, fundamental 9, 36, 195 
types, integral 196 
types.hincludefile 181,183 

ULONG_MAX 252 
unary minus operator, - 203-204 
unary plus operator, + 203-204 
unbuffered getchar 171 
unbuffered input 170 
undcl program 126 
#undef 90, 172, 230 
underflow 41, 250, 255 
underscore character, 35, 192, 241 
ungetc library function 166, 247 
ungetch function 79 
union, alignment by 186 
union declaration 147, 212 
union initialization 219 
union specifier 212 
union tag 212 
unions, operations on 148 
UNIX file system 169, 179 
unlink system call 174 
unsigned char type 36, 1 71 
unsigned character 44, 195 
unsigned constant 37, 193 
unsigned long constant 37, 193 
unsigned type 36, 50, 196, 211 
usual arithmetic conversions 42, 198 

'.v vertical tab character 38, 193 
va_list,va_start,va_arg,va_end 

155, 174, 245, 254 
variable 195 
variable, address of 28, 94, 203 
variable, automatic 31, 74, 195 
variable, external 31, 73, 195 
variable length argument list 155, 174, 202, 

218, 225, 



272 THE C PROGRAMMING LANGUAGE 

variable names, length of 192 
variable names, syntax of 35, 192 
vertical tab character, \v 38, 193 
void * pointer 93, 103, 120, 199 
void argument list 33, 73, 218, 225 
void type 30, 196, 199, 211 
volatile qualifier 196, 211 
vprintf, vfprintf, vsprintf library 

functions 174, 245 

wchar _ t type name 193 
while statement 10, 60, 224 
while vs. for 14, 60 
white space 191 
white space characters 157, 166, 245, 249 
white space count program 22, 59 
wide character constant 193 
wide string constant 194 
word count program 20, 139 
write system call 170 
writelines function 109 

\x hexadecimal escape sequence 37, 193 

zero, omitted test against 56, 105 

INDEX 





The C Programming Language 
Second Edition 

Brian W. Kernighan/Dennis M. Ritchie 

From the Preface 

We have tried to retain the brevity of the first edition. C is not a big language, and it 
is not well served by a big book. We have improved the exposition of critical 
features, such as pointers, that are central to C programming. We have refined the 
original examples, and have added new examples in several chapters. For instance, 
the treatment of complicated declarations is augmented by programs that convert 
declarations into words and vice versa. As before, all examples have been tested 
directly from the text, which is in machine-readable form. 

As we said in the preface to the first edition, C "wears well as one' s experience with 
it grows." With a decade more experience , we still feel that way. We hope that this 
book will help you to learn C and use it well. 

PRENTICE HALL, Englewood Cliffs, N.J. 07632 

ISBN 0-13-110362-8 


